
Introduction

2 Introduction Objectives

To understand the problems involved in writing
distributed code.

Multi-processor; multi-box; …. Multi-site.

To become familiar with some of the techniques and
concepts which allow you to write distributed code.

Problems and an introduction to their solutions.

Single processor programming is a solved problem.

If you write to solve the problem, the processor;
operating system; compiler (interpreter) will produce
an efficient solution without you knowing what is
happening under the hood.

Distributed programming is more complex unsolved

Techniques available, but no black box solution:
description of the problem to a system leads to a
solution

3 Introduction Problems

Transferring of information

Embarrassingly parallel

Problems where information is transferred to the sub
task at the start and no further interaction is required
until the end.
Information supplied at task creation

At the end some sort of collecting of the information
usually occurs, but that collecting has no influence
on any other sub tasks.
Information is collated by one task, with which the
sub task needs to communicate.

Trade off.
Sequential operation is clear and easy, but removes
the advantages of parallel execution.

The creation of the task and collection of the data will
constitute a small part of the problem and can be
carried out quasi-sequentially without a great loss of
efficiency.
(Gustaffson rather than Amdahl scaling)

4 Introduction Embarrassingly parallel

If the data can be be broken up into disjoint segments
and the same code can be run on each segment.
Running that code is the major part of the problem.

Particle physics … each collision is a separate
problem and there are millions of collisions.

Creating a film in CGI, each frame is a separate
problem.

Many search problems, including database searches.

For these sort of problems there is an existing partial
solution and it is the MAP-Reduce paradigm.

This is supported by Hadoop, where the data can be
spread over many sites and it appears to the user as
one data set.

The Map phase is then running the “query” and the
processing is done by a processor which is local to the
location of the data.
Reduce phase is collecting the data together.

“Query” includes
‘what is this
particle physics
event?’

5 Introduction MAP-Reduce-Hadoop

Specific implementation of the paradigm

Useful and many tutorials exist on the web

Will not cover

Concentrate on general techniques – which provide a
broader set of skills to use distributed computing.

Distributed v Multi-core

At one time distributed would have meant “multi-
boxes”

Now much is concerned with multi-core on the same
chip

The two are related
multi-core is the technique which has more general
application
multi-processor can be applied to bigger problems

Intel and AMD
make multi-core
chips almost
exclusively

Will cover topics
from both, which I
consider are most
educational

Will use multi-
processor to
indicate both

6 Introduction Road-Map

The topics will be …
1. Computer Arithmetic and Instructions
2. Execution of instructions – the data path
3. Pipelining – achieving single core performance
4. Caches – tools to achieve single core performance
5. Caches – problems they produce for multi-core

computation
6. Networks – joining computers. Performance
7. Problems with multi-processor computing
8. Tools for multi-processor programming

Not multi-issue processors.

An interesting and important topic, but the problems
of multi-processor computing can be discussed
with them.

You can’t understand the i7 without looking at it’s
evolution, any more than you can understand a
whale without understanding its evolution

7 Contents

Test Pit

Catalhoyuk

Do you need to know all the levels from
the properties of silicon to the configuration of the
Motherboard.

Probably – but not enough time.

At times I will dig down to the basic device level,
in order to understand the design decisions at the
upper level.

You want to understand the architecture of
computers – but at times architectural decisions
are driven by deeper level constraints.

8 Contents
Start with ISA – distributed architecture relies on
understanding single processor.

A large amount of the modern ISA is about distributed
processing – and about communicating between
different parts of the processors.

So when we cover cache coherence
a problem with multi-processor cpus

The techniques are applicable to running jobs on
distributed systems.

When we cover network topologies we can be talking
about on chip caches or machines on different
continents. The problems are the same, but the
balance is different and so the best solution may be
different.

This is real engineering, there is no optimum solution
only a balance.

Intel and AMD make different choices and at times
each has made a bad decision.

So much of this module is applicable in many places.

Concentrate on
generalisable

9 The Problem Performance

Everyone wants faster computers …

Users want their Desktop/Laptop machines
to respond more rapidly.

Engineers/Meteorologists want their
models to be more accurate and return
better results.

Resource Providers want to put more work
through their systems (and make more
money)

How do we improve performance.

Simple answer : perform operations faster.
Faster clocking of processors and their
components.

Improve the “efficiency” of computers at given
clock speed.

Increase the speed of a computer by increasing
the speed at which instructions execute

Increase the speed at which instructions
complete.

Wait for Intel

This is actually much
older than the
Intel/AMD retreat from
clock speed

Improvements

10 The Problem Performance improvements

We will look at techniques to increase
performance.

1. Take Advantage of Parallelism
2. Principle of Locality – spatial and

temporal
3. Caching

How we can measure these improvements?

What does it mean to say a computer has a
better performance?

How to quantify the improvements.

Distinguish between latency and bandwidth

Multiple Sites (Grid/Cloud), Multiple machines,
multiple cores, multiple disks, Multiple
components in a single core.

Such as
Carry look-a-head adders sums from linear to
log

Multiple memory banks searched in parallel in
set-associative caches

For a production line
Latency is the time for
the first car to come off
the line.
Bandwidth is the
number per hour in
steady state

Only the last of these
covered this weekend

11 Common
Cases

Make your effort count

Optimise the frequent situation not the
infrequent one

Instruction fetch and decode unit used more
frequently than multiplier, so where if there are
conflicting requirements satisfy. Fetch and
decode.

The infrequent case is often harder to deal with
and people put in much more effort to optimise

Database server has 50 disks / processor
Storage dependability dominates system
dependability.

overflow is rare when adding two numbers
optimise no overflow performance at the expense
of overflow

Amdahl’s Law (not just parallel computing)
Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1
 Speedup =

() ú
û

ù
ê
ë

é
+-´=

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction 1ExTime ExTime

True for your code

What is the
maximum speed up
for 1% non-par?

Your answer depends on what you measure

Which aircraft has the best performance?

What do you mean by best?

Fastest?

Profit per passenger mile?

How fast is your company internet? What is the best
way to get 20 TB of data to Berlin?

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

12 Measurement

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

13 Components Performance Components.

Program and complier give number of instruction

Instruction set architecture gives number of instructions
ISA also gives Cycles per instruction.

Technology determines seconds per cycle.

Clock

Numerous components of a computer depend on a
number of different inputs all being together, in
order to give the correct output.

Further the output may not reach a stable state until
some time after it is established.

The easiest way to ensure all inputs are present and that
all outputs are stable is to synchronise operations
on a clock.

A repetitive square wave of constant frequency and
where transitions occur at specific times

Free running devices are
possible.

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

3 GHz

Light travels 100mm
Electrical signals~ 10mm

Period 0.3ns

Transitions <0.1t
Worry about
propagation delays

Cycles per
instruction CPI

Performance Equation

14 Computer Components

A computer has a memory to store data and
instructions.

A CPU which loads data from memory to registers
and operates on the data with the
Arithmetic-Logic Unit (ALU)

All data and instructions are stored in memory as
words.

Von Neumann
architecture

1

1 0 1 01 1 01 1 0 1 01 1 01

1 0 1 01 1 01

0 bit

byte

16 bit word
PDP 11
Intel 286

32 bit word

Word length
architecture
specific

VAX
Pentium

1 0 1 01 1 01 1 0 1 01 1 01
1 0 1 01 1 01 1 0 1 01 1 01

36 bit wordPDP 10

60 bit word

11001110100010101101110111011101111101110010101001

Cray 7600

64 bit wordAlpha

Intel

11001110100010101101110111011101111101110010101001101111101110010101001

110011101000101011011101110111011111011100101010011011111011100101010011110

1974

Memory contains data or instructions
memory locations can be read or written.

Registers the values in the registers can in addition
can be modified.

15 Compromise Von Neumann Architecture

Lectures are based round the RISC architectures
which were developed by Hennessey and Patterson.

Why?

RISC machines have driven the improvements in
computing power over the last 25 years.

All RISC machines based on their work.
Textbooks based on their work.

Intel chips are an inelegant combination of
RISC/CISC made fast by brute force.
Understanding how they work requires
Understanding the underpining.

John Hennessey

MIPS R2000

David Patterson

Stanford
Berkeley

16 Computer Instructions

Use the MIPS as an example

Used in Patterson & Henessy; Hennessy & Patterson;
other texts

Clean (simple) architecture
Intel architecture is complicated by need to remain

backward compatible to the 8088 chip. Introduced
1979. Cut down version of the 8086 1978.

If computer history goes back to 1948 ….
This represents something ½ the age of the

programmable computer!

High level language instructions

C = A + B
are translated to a number of “low level” instructions

which are understood by the chip.

MIPS architecture Arithmetico-Logical operations only
on registers.

Instructions are divided into a number of subtypes.

Memory is divided into words. Each word is four bytes.
Addresses are in bytes.
Words are aligned byte address is a multiple of 4
(bottom of memory is word 0)

Von Neumann
architecture

Computer
Architecture

Computer
Organisation
and Design

17 Compromise Von Neumann Architecture

An instruction is enabled (executed) if it is pointed to
by the program counter (PC).
The PC is incremented by 1 word (4 bytes) after every
instruction, except when a jump is executed or a
branch is taken.

Data flow Architecture

Different architecture:
An instruction is enabled if all the operands are
available to it.
An instruction is fired when it is enabled and
resources are available for its execution.

Data flow architectures are easiest to implement for
single assignment languages.

At low level modern processors have elements of both.

Single assignment language.
A language where a variable is only allowed to be on
the left hand side of an assignment once.
eg Erlang
No anti-dependencies or output dependencies.

Agner Krarup
Erlang

Single assignment
language.
Good for parallel

Erlang, developed
by Ericsson for
telecoms apps.

Written 1986
Open source 1998

2009 gaining in
popularity

