
ISA Background

Processor
performance
Growth

The fact that there are no updates since 2015 is in itself diagnostic

ISA Bgrnd

Improvements Moore’s Law

Data

Number on transistors / cost-effective
integrated circuit double every N months
(12 ≤ N ≤ 24)

Second most
audacious
extrapolation I know
Behind Hubble

Hubble’s Law ISA Bgrnd

Improvements Moore’s Law

Increasing performance is driven use of extra
gates to, for example add cores.
Clock speed flattens around 2000

power limits
ISA Bgrnd

Improvements Moore’s Law

Moore’s law still applicable

ISA Bgrnd

Improvements Moore’s Law

Clock rate. VAX 11/780: 5 MHz
Current rate: 3.5 GHz
Ratio about 700

Moore’s Law about 100,000.

Performance about 10,000

Not all about clock rate – architecture drives the
rest.

VAX 11/780 about £150,000
Intel server about £1000
Price ratio about 150.

So performance per price about 1,000,000
Some effect of numbers sold.

Last thirty years clock rate has driven
improvements (500:10).

What is the effect of Moore’s Law.
Double transistor count.

Small units, shorter connection paths, faster
switching. Higher clock speed.

More transistors – more complex architecture,
more memory
Clock speed is not computer speed. ISA Bgrnd

Old numbers

From about the
time clock speed
flattened

Multi-core
complicates this
analysis

Word Computer memory

Consists of a set of bits, units which can have a
value of 0,1 – these bits are organised into
words.

The word length is a decision for the system
architect.

Must the word length be a factor of two.

PDP 8 had 8 bit words.
Intel chips have moved from 16 bit words to 32
bit words and now to 64 bit words.

DEC PDP 10 had 36 bit words
CDC 7600 had 60 bit words
Baby had 22 bit words

Modern systems standardised on powers of 2.

Can use 3 state units: -1, 0, 1. “trits”

Meaning Interpretation

What does a set of 1’s and 0’s mean?

For the system architect to decide.

Need to represent instructions for the computer
to execute.
Data for the computer to operate on.

The data words are straightforward and covered
by standards.

The instructions are specific to a particular
machine

Typical instruction Add $r1, $r2, $r3

$r1 <- $r2 + $r3

So we need some part of the word to tell us the
instruction and some part to give us the
addresses of the three registers.

1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0opcode

Registers Registers

Most of the memory in a computer runs much
slower than the system clock.
To ensure maximum performance we need
some memory which runs at the speed of the
processor clock and will allow the processor to
perform and operation every

The data words are straightforward and covered
by standards.

The instructions are specific to a particular
machine

So the instruction word of an instruction set is
split into fields, where each field corresponds to
a different part of the

Operations Instruction set

How many instructions do we need for a
computer

Say 90 – (we can see that is not too big). Needs
7 bits to encode the instruction.

That leaves 9 bits, so three per register. Or 8
addressable registers.

If we want more registers we might for two
operand instructions.

Add $r1, $r2

$r1 <- $r1 + $r2

4 bits and so 16 registers are addressable.

There is a trade off between number of
instructions, type of instructions and number
of registers.

Addressing Moving data to the registers

LDR $r1, A

Load register 1 with the contents of the memory
location A.

As before we assume, that 7 bits encode the
instruction and 4 bits encode the register.

That leaves 6 bits for an address – only 64
locations.

How can we address a reasonable amount of
memory?

(note the argument does not change for a 32 bit
word machine – in particular it is normally
stated that 4 GB of memory are addressable
and that requires 32 bits)

Two options:

Longer instructions
Different addressing modes.
Modified register architecture.

Long words Variable instruction length.

LDR $r1, A

Suppose when we see a load instruction we
known that we need to look in the next word to
get the address

We then have some instructions we require
more than 1 word.

Machines in the 60’s and 70’s had such
instructions and the intel chips still continue
this tradition.

The problem comes when we want to introduce
instruction pipelining or multi-issue cores.

But we cannot tell if a particular word
corresponds to an instruction or an address
until we have decoded all the instructions up to
that point.

Fixed instruction length (and fixed instruction
format) are useful in the production of high
performance computers.

Speed is context dependant
Performance for a resource user may be different
from a resources provider.
For a user it is likely to mean the time from job
submission to job retrieval.
For the provider it is more likely to be defined in
terms of the total amount of CPU delivered to the
customers in an accounting period
(day/week/month).
The user is only interested in the performance of
one thing … their programme.

The provider is only interested in the performance
of
… their resources at their job mix.

Both are likely to end up, using other
measurements as proxies for their requirements.

Instruction speed looks like a good general
purpose measurement.

Possibly scaled by cost

Can be antagonistic

Neither can measure
those things on all
possible systems.

ISA Bgrnd

Computer Speed

Clock Speed Instructions per Second
One way of quantifying the performance of a chip
is via the clock speed. 2.4GHz, 2.7GHz, …….

But how many ticks of the clock does it take to
execute one instruction?
Because of this ambiguity people also measure
speed in instructions per second (or more
normally Millions of …)
Manufacturers quoted the processors MIP rating.
However:

• Not all instructions take the same length of
time
• Some instructions (instruction sets) do more
work

Has often been ridiculed as
Meaningless Indicator of Processor Speed

What interests us is
“How much work we can do per second”

Intel/AMD would argue
for two chips which differ
only in clock speed it
does make sense

MIPS is not useful

MIPS is application
specific

ISA Bgrnd

FLOPS Floating Point Operations per Second
This lead to the idea of measuring how many
useful instructions can be completed per second.
The ones which gained favour were
Transactions … for database applications
FLOPS … for numerically intensive
calculations
SPEC standardised set

Clock Cycle
Synchronisation between different parts of the
system. Combinatorial logic does the work.
Registers hold the intermediate results.

Latch
or

register

combinational
logic

Speed is given by
the speed of the
slowest unit

The registers mean
that the inputs to
one unit remain
stable, even when
the outputs of the
previous unit are
switching.

ISA Bgrnd

Instructions Anatomy of an Instruction

What happens when a computer executes an
instruction such
add $t0, $s0, $s1; Single instruction
add $t1, $s2, $s3;

The program counter PC set to the next
instruction.
instruction fetched
instruction decoded
two registers added to give a third

Even for integers the last stage clearly has a time
structure because when adding, you need to know
if the previous position had a carry.

Finish instruction
For the next one

By increment or jump

The Nova called registers
accumulatorsFour general purpose

registers
A program counter 15bit
1 bit carry register

ISA Bgrnd

Early Early computers had a simple instruction set
NEG Invert Source Accumulator (SAC) and

place in destination accumulator (DAC)
MOV Move SAC to DAC
INC Increment SAC and store in DAC
ADC Add ones compliment of SAC to DAC.

Store in DAC
ADD Add SAC to DAC. Result in DAC
SUB Subtract SAC to DAC. Result in DAC
AND Logical AND SAC & DAC. Result in DAC
JMP Jump to an address
JSR Jump to subroutine (first store PC in
AC3)
ISZ Increment and skip on zero
DSZ Decrement and skip on zero
SKP Skip unconditionally
SZC Skip on zero carry
SNC Skip on non zero carry.

ISA Bgrnd

CISC Early
Also some I/O specific ops and some addressing
modes
Direct – access the location pointed to
Indirect – access the location pointed to and use
that as an address to access the instruction/data

Rather small number of instructions

Complex Instruction Set Computers (CISC)
People started to build machines which had more
complex instructions which would do more things.

Limited memory so instructions which would do
many things could save memory.
Complex instructions made it easy to implement
high level instructions.
A feeling that by implementing “high level”
instructions in hardware the computer would run
faster.

A number of reasons

In some places this
worked.
Floating point processors

ISA Bgrnd

CISC In the resulting computers some instructions
would run in just a few cycles while others might
take many hundreds.

VAX complexities
The add subtract instructions mostly came in a 2
register and a 3 register version
INSQUE insert in queue
REMQUE remove from queue
MOVTC move translated characters
which moves characters defined in a translation
table. The first six registers are filled with suitable
parameters.
BPT break point – for debugging.
BBSSI branch on bit set and set
interlocked shared access to data
structuresProgramming the Nova

was easy.

Programming the VAX
was impossible. (Well
nearly!)

ISA Bgrnd

CISC .
DUMP start address, end address
XFC Extended function call

extend the instruction set
(microcode)

LDPCTX Load process context
SVPCTX Save process context

If a machine allow multi threaded programming,
then when one thread is removed from operation
but before the replacements starts, “the context of
the thread must be saved”. State of the registers,
state of programme counter, state of the hardware
stack., ……
The VAX did that with one assembler language
instruction
Although the instruction might be microcode and
have to be translated into simpler instructions to
execute

Sharing of data

ISA Bgrnd

RISC Reduced Instruction Set Computers
In the 1970’s it became clear that using the
increased word length to increase the number of
complexity of then instruction set was not as
useful as it had seemed.

It was hard to create compilers which used the full
set of instructions.
In a famous paper Patterson showed the VAX
INDEX Check array bounds on

multidimensional arrays
Could be performed faster using simple VAX
instructions.
The result was a move back to simpler instruction
sets
By Patterson and Hennessey (among others)
80x86 – is not RISC (at least externally).
Historically goes back to CISC era – backward
compatibility means must stay with the set.
But CISC is translated to RISC internally and the
chip works as a RISC chip!

“The case for the reduced
instruction set
computing.” Pattersoin

The lead time means that
implementations lag
research

ISA Bgrnd

Optimisation Advantages
Denser encoding
smaller code size

better memory utilization,
saves off-chip bandwidth,
better cache hit rate

simpler compiler
no need to optimize small instructions as much

Disadvantages –
Larger chunks of work
compiler has less opportunity to optimize (limited
in fine-grained optimizations it can do)
More complex hardware
translation from a high level to control signals and
optimization needs to be done by hardware

The optimum point changed – not just fashion
and knowledge but also the existing technology

Cache hits later

ISA Bgrnd

ISA Semantic Gap

Where does the ISA fit

Close to High level Language (HLL)
small semantic gap

complex instructions
simple compiler – at the time compilers not good
enough

Close to hardware control signals
large semantic gap

simple instructions
complex compiler

RISC motivation

ISA Bgrnd

Register
taxonomy Registers and Memory

Computers have registers which the CPU can easily
operate on.
They are the fastest memory. Access is a clock cycle
or even less.
They are few of them so access is simple.

It is possible for the CPU to operate on the memory
directly, but this has certain overheads.

There needs to be a path from all of memory to a
number of different places in the CPU (especially if we
wish to pipeline). Complexity & cost.
Memory accessed take more than a single clock cycle,
so parts of the CPU must be able to work at different
rate – again complexity and hence cost.

Computers may be classified by the way the CPU
interacts with memory and registers.

ISA Bgrnd

Classification Instruction set taxonomy
Stack
Accumulator
Register-register Load-Store
Register-memory
Stack
All movements to and from memory are to the
same implicit place. The top of the stack.
Operations act on the top values in the stack and
place the answer on the top of the stack. They
destroy the operands.

The VAX had registers
and a stack.

Push A
Push B
Add
Pop C

64-bit
ALU

64-bit
ALU

64-bit
ALU

A

B

No ops directly
on memory

HP35
Postscript

ISA Bgrnd

Classification Accumulator
There is only one place operations can be done
and that is the accumulator. (Accumulates
results).
All operations implicitly refer to the accumulator

Load A
Add B
Store C

64-bit
ALU

64-bit
ALU

64-bit
ALU

This is a single register machine of register-
memory type.

ISA Bgrnd

Classification

Load $r1,A
Add $r3, $r1, B
Store $r3 C

Register-Memory
We move to memory to register for manipulation,
but the ALU can take data directly from memory.

64-bit
ALU

A

64-bit
ALU

A

B

64-bit
ALU

C

ISA Bgrnd

Classification Load-Store
Operations move between memory and register
OR operate on the values in the registers.

Load $r1, A
Load $r2, B
Add $r3, $r1, $r2
Store $r3,C

64-bit
ALU

A

B

64-bit
ALU

A

B

64-bit
ALU

C

ISA Bgrnd

Comparison Properties

All three architectures have been used and they
have different strengths.

Accumulator : Low component count for the fast
electronics. No need to specify destination for Load
or source for Store, more space for memory address
or instruction space.

Register-Memory : Low instruction count. Used by
machines with complex instruction sets, also tend
to low instruction count. Complexity of two modes
of operation. Useful if speed of memory access is a
limiting factor.

Register-Register : Simplicity of implementing the
system, both in hardware and software. Makes
instruction pipelining more efficient.

ISA Bgrnd

History The world’s first stored programme computer

The Manchester Small Scale Experimental
Machine
“Baby”

It had an accumulator architecture.

32-bit word length
Binary arithmetic using 2's complement integers
A single address format order code
A random access main store of 32 words,

extendable up to 8192 words
A computing speed of around 1.2 milliseconds per

instruction 0.8KHz

Speed was not an issue
component count was.

A millionth of a modern
intel chip.

Transistor count
0

Baby ISA Instructions

If the accumulator is A and the contents of the
memory at address S is represented by the
address

LDN (Load negative) A = - S
SUB(Subtract) A = A - S
STO(Store) S = A
CMP(Skip on negative A) If A < 0, CI = CI + 1
JMP (Jump) CI = S
JRP (Jump relative) CI = CI + S
STP Halt

light the stop lamp

Memory: 32*32 bit array Williams-Kilburn tube
Two special register Williams-Kilburn tube
CI: address of current instruction
PI: current instruction
A: accumulator

CI now normally called
the PC

ISA Bgrnd

Tube Memory Williams-Kilburn Tube

When Turing and the Americans started work
there was only one sort of memory.
Mercury Acoustic Delay Line.

It was slower and more complex …
Williams and Kilburn invented the tube and the
computer was designed to demonstrate it as a
memory technology. It was simpler and as a result
the Manchester machine was the first to run a
programme.

The speed of the computer was limited by the
memory access time …

Cache memory; instruction pipelining;

Memory speed is still the
bottleneck

ISA Bgrnd

Tube Memory Principles

Cathode ray tube …
Read charge and refresh
Referred to in the paper
as dot-dash

Williams, Kilburn, Tootill (1951)

Read charge and rewrite

PC and current instruction

Programmes Addition

00 JMP 00 Start
01 LDN 07 -1012 into acc
02 SUB 08 -12 (contents of 8)
03 STO 09 store –(sum)
04 LDN 09 load -(-sum)
05 STO 09 store sum
06 STP halt
07 1012 data word
08 12 data word

A programme to add two numbers.
The memory was a CRT tube.
Dots on a screen.
Bright = 1, dull = 0. Leave charge on the
Screen. Read it and then refresh the
Screen.

RAM still uses a
read/refresh cycle.

Programmes The world’s first programme
Factor a small number 21st June 1948

a few days later they tried it on 218

It ran for 52 minutes – executing 2.1 million
instructions and 3.9 million memory accesses

ISA Bgrnd

Programmes The world’s first programme
Williams, Kilburn, Tootill (1951)

Looks like RISC!
ISA Bgrnd

Reference A storage system for use with binary-digital
computing machines
Proceedings of the IEE - Part III: Radio and
Communication Engineering (Volume:96 , Issue:
40

ISA Bgrnd

Postscript The world’s transistorised computer

Manchester 1953

Transistor invented 1947

ISA Bgrnd

Registers Properties
Early machine tended to use stack and
accumulator.
Stacks are inflexible, they can only do one
operation at a time in the order in which the
operands have been loaded.
Registers can re-order operations and perform
operations in parallel.

Best are General Purpose Registers (GPRs)
No optimum number although more is generally
better.
Used to pass parameters, evaluate expressions
and hold expressions which are repeatedly
referred to. Loop variables.
2 operand architecture - add $r1, $r2
$r1=$r1+$r2
3 operand architecture - add $r0, $r1, $r2
$r0=$r1+$r2

How many ALU operands may be from memory.
0-3

Some machines has
reserved registers

The IBM 360, put
Fortran implicit variables
in registers and if you
put them too deep two
variables would end up
in the same register !!!!

The VAX had both they
were memory-memory

ISA Bgrnd

Comparisons Properties

Early machine tended to use stack and accumulator.
Modern machines use GPR.
Not simply improvement – different concerns.

See Hennessy App. B

Architecture Benefits Drawbacks

Register-register Fixed length instructions. Almost
constant number of clock
ticks/instruction. Easy(!) to pipeline

High instruction count, means
large memory requirements.

Register-Memory Good instruction density and easy
to encode

Variation in clock
ticks/instruction. More
requirement for registers than
memory-memory

Memory-Memory Compact. No need for temporary
storage in registers. Low
instruction/low register count

Variation in instruction size and
clock ticks/instruction. Memory
bottleneck; hard to pipeline

Machines in the 60’s, 70’s and early 80’s were memory
limited.
VAX 11/750 typically shipped with 1 Mbyte RAM and
would support a small department … 10 users.
Pipelining was not a concern of manufacturers (except for
supercomputers – and the main supercomputer
manufacturer CDC/CRAY was using RISC.

CDC 6600
CDC 7600 – transistor
based computer.

Addressing Address Modes

For multi-byte words how do we read them?

Is the lowest byte in memory the least significant
byte or the most significant byte.
is 6892 stored as or

Actually makes little difference except when
exchanging data among computers.
Referred to as Little Endian or Big Endian
(Actually trivial compared with exchanging 32bit
with 36bit or 60bit to anything).

Alignment
The other question is do words have to be aligned
with word boundaries.
Does the first byte of an object s bytes long, have
to be at an address such that address Mod(s) = 0.
It is also possible to have half word and double
word alignment.
Some architectures allow both, but aligned access
is faster

Gulliver’s Travels.
Jonathan Swift.
Lilliput v Blefescu
War over the proper end
to break an egg.

6 8 9 2 2 9 8 6

ISA Bgrnd

Addressing Address Modes for arithmetic

Immediate Add R4, #3

Register Add R4, R3

Register indirect Add R4, (R3)

Add the contents of the memory
location pointed to by R3

Direct (absolute) Add R4, (10001)

R4: X R4: X + 3

R4: X
R3: Y

R4: X + Y
R3: Y

R4: X
R3: 6396

R4: X + Z
R3: 6396

Mem 6396: Z

R4: X R4: X + Z

Mem 1001: Z

Whole word
address: greater
address range

ISA Bgrnd

Addressing Address Modes for arithmetic

Displacement Add R4, 100(R3)

Add the contents of the memory
location 100 after the address in R3

Indexed Add R4, (R3+R2)

Add the contents of the address from
memory location which is the sum of
the contents of R2 and R3

R4: X
R3: 6396

R4: X + Z
R3: 6396

Mem 6496: Z

Mem 6401: Z

R4: X
R3: 6396
R2: 5

R4: X+Z
R3: 6396
R2: 5

ISA Bgrnd

Addressing Address Modes for arithmetic

Auto increment Add R4, (R3)+
Auto decrement Add R4, (R3)-

As register indirect, but add a
suitable off set to the register

Memory indirect Add R4, @(R3)

Use the address pointed to by R3 to
provide an address whose contents
are to be added.

R4: X
R3: 6396

R4: X + Z
R3: 6400

Mem 6396: Z

Mem 6396: 4578

R4: X
R3: 6396

R4: X+Z
R3: 6396

Mem 4578: Z

The VAX had a memory
indirect with an auto
increment

Loops

ISA Bgrnd

Addressing Address Modes

Scaled Add R4, (100)R2,[R3]

5124 = 100+5000+d*R3

The address is the base address
R2 plus and offset (100) plus an
offset which is a word length times the

value of R3.
Useful for stepping through an array.

Here again, measurements on real programmes
show that the simplest modes are the ones most
user.

R4: X
R3: 6

R4: X + Z
R3: 6400

Mem 5124: Z

R2: 5000

ISA Bgrnd

Addressing Jumps

Transfer control
Transfer control conditionally

Jump to anywhere in memory (including virtual
memory).

Addressable memory is then largest number for
an n bit binary number

2n – 1

32 bits gave the 4 Gbyte address space of earlier
machine
65k for 16 bit machines.

But the instruction takes some of the space.
How do we get round this?

ISA Bgrnd

Addressing Jumps on Register content

So the jump contains the address of the register
which contains the target address of the jump.

Get long words into the register by provides
A load upper and load lower to fill the register.

Used for subroutine/method returns

On call (current address+1) is placed in a register.

There is a single instruction placed at the end of
the programme which causes a jump on the
contents of that register.

ISA support for high level languages

ISA Bgrnd

Addressing .
Jump on current position

The other way is to provide an offset to the
current position – which is m bits long

This means that the upper bits of the address are
taken from the current position and the m bits
can be used to provide the lower bits.

Because of spatial locality this is much more
powerful than it might appear. Most instructions
will be close to the existing instructions.

Data words also tend to be clustered, so even if
the data is far away from the instruction.

Put a suitable address in a register and access
data words relative to that address, again we can
use fewer bits with very little impact on the actual
performance of the programme

Locality is built into the ISA
also explains power of cache

ISA Bgrnd

Can also be used
for memory target
for load or store

Negative jumps
are a little more
tricky

