Pre-History

Hollerith. Punch card control. IBM

Antikythera mechanism

Analogue computation of planets, moons & festivals 100-150BC

> Gunnery control units Analogue

> > Jaquard loom Punch cards

Babbage Difference Engine 1821

Babbage Analytical Engine 1871

Intellectual Foundations

1830

2

Babbage & Lovelace Stored programs

ÖSTERREICH €0.55

Uber fornal unentsheidbare Satze der Principia Mathematica und verwandter Systeme1

1931

On computable numbers, with an application to the Entscheidungsproblem

John Von Neumann.

Emil Leon Post

1935

Gestation

1948

1941

Konrad Zuse Z3

Using 2,300 relays, the Z3 used floating point binary arithmetic and had a 22-bit word length.

Whirlwind – flight simulator built for US Navy. Completed 1951 – never used Analogue 1944

Harvard Mark1

Relay-based calculator. The machine had a fiftyfoot long camshaft that synchronized the machine's thousands of component parts.

3

1948

Early Years

1960

1948

Manchester Baby

First stored program computer

First transistor

First fully transistorised computer. Manchester

1954

1951

First commercial application of computers Lyons Electronic Office LEO

Daily scheduling cake production and delivery to Lyons Tea shops

First mass produced computer. Shipped

450 in one year

1960

Growing up

1970

1964

1964

CDC 6600 first supercomputer 3 MHz

IBM 360 family

1968

Illiac –iv supercomputer attached to internet

1965

DEC PDP 8 first successful minicomputer

5

8 Binary

George Boole

Samuel Morse

History

Often traced back to Boole. Laws of thought 1854

	Letters		Numbers	
	Α	•—	1	•
Mana designed his sede in 1000	В		2	••
Morse designed his code in 1832.		-••	3	•••——
			4	••••
Is it binary?			2	••••
			0	
	н			
Two symbols	ĩ	••	0	
Two Symbols.		•	6	
	ĸ	-•-	v	
Variable length data compression technique	L	••		
variable lenger data compression teeninque	М			
"Gap" is necessary to decode stream.		—•		
		• •		
	Q	•_		
Computer's use 1, 0, but also have a word	R	• •		
• • • •		• • •		
	Т	-		
which is an extra piece of information	U	••		
-	V	•••—		
	W	•		
	X	_••_		
	Y			

Morse code key

z

9 50's-70's	Hardware Costs	
	Large scale machines IBM machines only available for rent Software nearly all 'special purpose' Hardware costs dominated	Discrete components
	Main memory small – and slow. No hierachy.	
	Local high speed memory restricted – a few G eneral P urpose R egisters (GPR)	
	Memory access dominated the speed.	As for 'Baby'
Early 'pipeline'	Overlap fetch, decode and execute.	
	Fetch dominates the number of cycles per instruction.	
	Reduce the number of instructions required for a programme, by introducing complex instructions.	

10 CISC	Complex Instruction Set Computers	
	Result was multi-cycle instructions to reduce total fetch time.	Hundreds of cycles per instruction.
	50's saw the rise of the High Level Language	
	<i>Semantic Gap</i> opened between programmers and architect.	
	A programmer saw Fortran/Cobol/C statements.	
	In the 70's advances in hardware allowed some of this gap to be bridged in hardware.	
	The result was the Complex Instruction Set Computer (CISC)	
	(Named only in retrospect with the rise of RISC)	

11 RISC	Complexity is unused		
	IBM discovered in the 70's dominated by a few instruc		
	Load Conditional Branch Comparer Store	22% 20% 16% 12%	Details depend on ISA
	Optimise for these implement them in hard abandon micro-coding of provide a well engineered Trace back to CDC6600 (1	ware f complex instructions 1 optimising compiler 964) a supercomputer	IBM strong in H/W and S/W. Designed together

T

12 MIPS &	Reduced Instruction Set Computers		
SPARC	Patterson et al at Berkeley looked at VLSI.		
	Small instruction set meant lots of space on the chips. What could be done with it?	Increased versatility	
	Introduce large CPU <i>register file</i> , global registers accessible to all procedures.		
	<i>Window registers</i> output from one procedure, input to the next. SPARC		
	<i>Hennessy et al.</i> Stanford MIPS concentrated on a pipeline architecture.	Multiple instructions simultaneously	
	Did not recognise <i>pipeline hazards</i> in hardware. Compiler had to identify pipeline hazards and solve them. Compiler writer had to have detailed knowledge of architecture.		
Software based approach like Stanley the car that won the DARPA challenge	Uses single register file with no windows.		
	Microprocessor without Interlocking Pipeline Stages		