
History Time Line
Pre-History 1935

Antikythera mechanism

Analogue computation of
planets, moons & festivals

100-150BC

Babbage Difference Engine 1821

Babbage Analytical Engine 1871

Gunnery control units

Analogue

Jaquard loom

Punch cards
Hollerith. Punch card
control. IBM

1

Intellectual Foundations
1830 1945

1925
Principia Mathematica

Formalise all of arithmetic

Babbage & Lovelace

Stored programs

1931
Uber fornal unentsheidbare
Satze der Principia Mathematica
und verwandter Systeme1

1937
Alan Turing
On computable numbers, with
an application to the
Entscheidungsproblem

Emil Leon Post

1945
John Von Neumann.
Computer Architecture

2

History Time Line
Gestation 19481935

Harvard Mark1

Relay-based calculator.
The machine had a fifty-
foot long camshaft that
synchronized the
machine’s thousands of
component parts.

1941 1944

Konrad Zuse Z3

Using 2,300 relays, the
Z3 used floating point
binary arithmetic and
had a 22-bit word length.

1943

Whirlwind – flight simulator built for US
Navy. Completed 1951 – never used

Analogue

3

First transistor

History Time Line
Early Years1948 1960

Manchester Baby

First stored program
computer

1948

1954

First mass produced
computer. Shipped

450 in one year

First fully transistorised
computer. Manchester

First commercial application of
computers Lyons Electronic Office LEO

Daily scheduling cake production and
delivery to Lyons Tea shops

1951

4

History Time Line
Growing up1960 1970

IBM 360 family

1964 1964

CDC 6600 first
supercomputer 3 MHz

1965
DEC PDP 8 first
successful mini-
computer

1968

Illiac –iv
supercomputer
attached to internet

5

1976

History Time Line
Youth1970 1980

HP35

1971

1974

Alto

Xerox Parc

Apple 1

1978

Dec Vax 11/780

Minicomputer.
Address 4.3 Gbytes
memory.

Mandlebrot Set

Apple II 1977

6

History Time Line
The personal computer and the world wide web1980 1990

1981 IBM PC

MS-DOS/Intel 8088

1981 Osbourne 1

First portable 10kg

1983 Compaq.

First PC clone

1984 Mac

1988 Next
Cube

1989 Tim Berners-Lee

WWW

Mike Sendall

7

History

Often traced back to Boole.

Laws of thought 1854 ….

Morse designed his code in 1832.

Is it binary?

Two symbols.

Variable length … data compression technique

“Gap” is necessary to decode stream.

Computer’s use 1, 0, but also have a word

which is an extra piece of information

George Boole

Samuel Morse

8 Binary

9 50’s-70’s Hardware Costs

Large scale machines

IBM machines only available for rent

Software nearly all ‘special purpose’

Hardware costs dominated

Main memory small – and slow. No hierachy.

Local high speed memory restricted – a few General
Purpose Registers (GPR)

Memory access dominated the speed.

Overlap fetch, decode and execute.

Fetch dominates the number of cycles per
instruction.

Reduce the number of instructions required for a
programme, by introducing complex instructions.

Discrete components

As for ‘Baby’

Early ‘pipeline’

Complex Instruction Set Computers

Result was multi-cycle instructions to reduce total
fetch time.

50’s saw the rise of the High Level Language

Semantic Gap opened between programmers and
architect.

A programmer saw Fortran/Cobol/C statements.

In the 70’s advances in hardware allowed some of
this gap to be bridged in hardware.

The result was the

Complex Instruction Set Computer (CISC)

(Named only in retrospect with the rise of RISC)

Hundreds of cycles per
instruction.

10 CISC

Complexity is unused

IBM discovered in the 70’s that a program is
dominated by a few instructions.

Load 22%

Conditional Branch 20%

Comparer 16%

Store 12%

Optimise for these …

implement them in hardware

abandon micro-coding of complex instructions

provide a well engineered optimising compiler

Trace back to CDC6600 (1964) a supercomputer

Details depend on ISA

IBM strong in H/W and
S/W.

Designed together

11 RISC

Reduced Instruction Set Computers

Patterson et al at Berkeley looked at VLSI.

Small instruction set meant lots of space on the
chips. What could be done with it?

Introduce large CPU register file, global registers
accessible to all procedures.

Window registers output from one procedure,
input to the next. SPARC

Hennessy et al. Stanford MIPS concentrated on a
pipeline architecture.

Did not recognise pipeline hazards in hardware.
Compiler had to identify pipeline hazards and
solve them. Compiler writer had to have detailed
knowledge of architecture.

Uses single register file with no windows.

Microprocessor without Interlocking Pipeline Stages

Increased versatility

Multiple instructions
simultaneously

Software based approach
like Stanley the car that
won the DARPA challenge

12 MIPS &
SPARC

