
Pipelining: the key to 
performance



How a computer works in theory

Operands fetched & placed in the registers
Instruction fetched from memory
Operation on registers
Result stored in RAM

A system working like that would be 1000s slower

The optimisations for a real system, make it harder 
to write parallel computations – and we need to 
understand them to understand parallel 
computations.

2 Operation of a 
processor

Pipelining

RAM

Registers

ALU

Next instruction 
fetched

Operands fetched 
from RAM

Instruction

Result



How to increase computer performance
We want to do as much work as possible in a given 
time.

Seems simple; drive the clock faster and complete 
more instructions per second.
Increase in clock speed 1940-2000 was certainly 
useful but from the very early days the clock speed 
was never the determining factor in processor 
performance.

3 Schematic
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4 Details In fact this is  gross simplification
The PC is pointing at location 
000A000540130500
• The instruction needs to be transferred from 

that location to the execution register
• The PC needs to be incremented to the next 

location 000A000540130504 (an adder is 
required)

• The instruction needs to be decoded
• The address of any operands needs to be 

generated.
• The operands required to be transferred to the 

input of the Arithmetic Logic Unit (ALU)
• The operation will be executed – (even in the 

case of addition this is in effect many 
operations
• .  . . . . . . 

• The value of the PC may be modified – (a 
branch instruction)

• The result of any arithmetic or logical 
operation needs to be stored.

What is thought of as a single action turns out to 
be a multi-part action

0 0 5 0 A 3 03 1 3 0 5 3 D 0 0
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5 Parallel
The idea of performing different parts of the 
instruction in parallel goes back to the Z1 and Z3.

It become popular with the rise of the 
supercomputer in the late 60’s early ’70s

It is referred to as a pipelining more formally as
Instruction Level Parallelism (ILP)

The instruction stages are said to move down a 
pipeline.

Konrad Zuse in front of a 
replica of the Z3.
Deutches Museum
Munich
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6 Stages
The names for the stages which the instructions 
is split are referred to as

Fetch
Decode
Execute 

The engineering design of the stretch computer
Erich Bloch
IRE-AIEE-ACM '59 (Eastern) Papers presented at the 
December 1-3, 1959, eastern joint IRE-AIEE-ACM computer 
conference 

Abstract
“The Stretch Computer project was started in order 
to achieve two orders of magnitude of improvement 
in performance over the then existing 704. 
Although this computer, like the 704, is aimed at 
scientific problems such as reactor design, 
hydrodynamics problems, partial differential 
equations etc., its instruction set and organization 
are such that it can handle with ease data-
processing problems normally associated with 
commercial applications, such as processing of 
alphanumeric fields, sorting, and decimal 
arithmetic.”

The IBM stretch 
computer.
IBM’s first 
transistorised 
supercomputer. Aimed 
for two orders of 
magnitude 
improvement over any 
existing machine

Pipelining



7 RISC Stages
The RISC pipeline – as described in Patterson and 
Hennessey is

Instruction Fetch
Instruction Decode
Execute
Memory Access
Writeback

And the standard diagram which displays its 
operation is
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8 Register file
The RISC pipeline – as described in Patterson and 
Hennessey.

The operands for the CPU to work on must be held 
in registers a special place in the chip called the 
register file. The results must be written out to a 
register.

More about this later –
for the moment we assume that the data 

is in the registers. 
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Instruction Fetch

“Store”

Instruction Memory

9 Fetch

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

The first stage is to place the next instruction into 
the location in the CPU where it can be used to 
drive computation.
Assumes the Programme Counter PC – contains 
the next address of the next instruction
“Store” – deliberately ambiguous

PC

There is an assumption 
that the instruction is 
in the instruction 
cache and can be 
fetched in 1 cycle
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Instruction Memory

Instruction Decode

“Store”

10 Decode

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

For a modern computer it is normal that 
arithmetical operations can only affect the register 
files. So values from two of the registers must be 
transferred to the inputs to the ALU.
The instruction must assert suitable control lines 
to the ALU

PC

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC will need to 
be updated

Suppose the 
instruction is
add $R3, $R4, $R5

64-bit ALU
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Instruction Memory

Execute

“Store”

11 Execute

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

The ALU performs the requested operation and the 
result will appear at the output of the ALU.
Here we may run into trouble with the time it 
takes for the operation to complete.
Increment/compare etc.  can clearly be completed 
in one operation others may take longer.

PC

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC will need to 
be updated

Suppose the 
instruction is
add $R3, $R4, $R5

64-bit ALU
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Instruction Memory

Memory Access

“Store”

12 Memory

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

This is the stage where memory is accessed if it is 
required. For instance a load for an array involves 
using the ALU to calculate an address using the 
address of the start of the array and the offset of 
the required element.

PC

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC will need to 
be updated

Suppose the 
instruction is
add $R3, $R4, $R5

64-bit ALU
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Write Back

Memory

Instruction Memory

13 Write Back

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

64-bit ALU

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC

PC will need to 
be updated

Output of the ALU – transferred back to the 
register file
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Overlapping instructions
Instructions are divided into a number of 
parts.

Idea is to fetch the second instruction while 
decoding the first instruction.

… fetch the third instruction while decoding 
the second instruction and executing the 
third instruction

14 Pipeline

IF

ID IF

EX ID IF

3 2 1
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Overlapping instructions
Clock cycle 1:   Instruction 1 Fetch
Clock cycle 2:   Instruction 2 Fetch

Instruction 1 Decode
Clock cycle 3:   Instruction 3 Fetch

Instruction 2 Decode
Instruction 1 Execute

15 Pipeline*
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Pipeline balance

Each stage of the pipeline needs to take the 
same length of time.
The advance through the pipeline will 
proceed at the speed of the slowest stage.

In pipelining the latency does not improve 
the time for the first instruction to complete 
does not change.

Ideally after the pipeline is full an instruction 
completes every tick of the clock

Anything that means an instruction cannot 
enter the pipeline OR cannot proceed to the 
next step reduces the speed of the processor.

16 Requirements
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Pipeline 

Each stage of the pipeline needs to take the 
same time

17 Ideal

8 7 6 5 4 3 12

7 6 5 4 3 2 1

6 5 4 3 2 1

8 7 6 5 4 3 12Clock

IF

EX

ID

5 4 3 2 1

4 3 2 1

MEM

WB

Non-pipelined
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Balanced pipeline
If it is possible to split the full instruction 
into n equal sections each of which take 1/n 
of the time – then in the steady state the 
speed up is n.

If for example we have 8 instructions.

Non pipelined they take 5*8 cycles – 40.
Pipelined they the first instruction  does not 
complete for 5 cycles, and then they complete 
every cycle – 12 cycles.
Speed up is 40/12 = 3.3

Thus even an “ideal” pipeline does not reach 
the theoretical speed up for short 
programmes.

18 Speed up
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Pipeline 

Pipeline stall in one stage looses an 
instruction at every stage

This is known as a stall

19 Stalls

6 5 4 3 12

5 4 3 2 1

4 3 2 2 2 1

8 7 6 5 4 3 12Clock

IF

EX

ID

3 2 1

2 1

MEM

WB
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Effect of a stall
The rest of the pipeline is unable to work.

A bubble propagates downstream from the 
stall.

Instructions unable to proceed upstream of 
the stall.

The result is that performance is lost.

For 8 instructions with a 2 cycle stall –
12 instructions becomes 14
a loss of around 15%

20 Stall
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Causes of a stall
There are a number of things which cause a 
pipeline stall.

The hardware is not available for the 
operation to proceed.

To fetch the next operation we need to 
generate a new PC (programme counter)
That means adding 4 to the current counter.
If the EX stage involves an addition then 
either the EX will have to wait a cycle or the 
next.

21 Causes of Stall
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Information from earlier instruction not 
available

C = A + B
if C  > 10 jump <target>

OR
C = A + B
D = C + E

In both cases the value of C is not available 
to following instruction, until it has been 
written to registers.
That delays the next instruction by two 
cycles.

22 Causes of Stall
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Some part of the instruction takes too 
long.

Multiplication takes longer than addition so 
if the EX stage involves multiplying two 
numbers it make take longer than adding 
two numbers.

23 Causes of Stall
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Accessing instruction or data takes more 
than one cycle.

Retrieving a data item, an instruction or a 
value from disk, may take hundreds of 
thousands of cycles.

A disk spins at 10,000 revolutions per 
minute.
If you just miss reading a location and have 
to wait for the disk to revolve one more cycle.
1 revolution takes 60/10000 =  0.0006s
For a 3 GHz machine that is 200,000 cycles.

Ignoring any other causes of latency.

24 Causes of Stall
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Preserving performance

A large part of ISA is concerned with the 
prevention of stalls in the processor pipeline 
or the mitigation of their effects.

In what follows we will spend a lot of time 
talking about preventing stalls or minimising 
their effects.

Complete one instruction per cycle

25 Performance
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Mitigating stalls

One data transfer takes 200,000 cycles.

Start a transfer every cycle. After 200,000 
cycles a transfer finishes every cycle.
400,000 cycles for 200,000 data words is 2 
cycles/ word. 
So 1 stall per word – if we can overlap the 
transfers.

There is no machine that can perform 
200,000 simultaneous reads/writes to disk: 
but the principle of overlapping latencies so 
that their total effect is mitigated is a good 
one. 

26 Performance
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Transferring data in blocks.

It took 200,000 cycles for the disk to be 
ready to transfer the word from disk, but the 
word that immediately follows is available 
immediately.

Transferring blocks of data quite often 
means that after the latency to the first 
word, subsequent words can be transferred 
with far less latency.

So rather than 200000 transfers, getting 1 
word each, we have the more plausible 1 
transfer fetching 200000 words, with the 
same average time.

27 Performance
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Duplicating hardware
If we want to advance the PC on every clock 
cycle we can introduce a dedicated PC 
adder.

Now we always have a fresh PC, because 
while the instruction is being fetched the PC 
can be incremented.

This principle can be extended in other ways 
as we shall see.
The PC must remain stable during IF – so we 
might clock the PC register so it only 
transitions on the clock pulse.

28 Performance

64-bit ALU

4 PC
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Executing out of order
We need the result of instruction in order to 
execute the subsequent instruction.
But we may be able to find an instruction 
further on in the code which does not suffer 
from this problem.
So

C = A + B
D = C + E
G = X + Y

But execute as
C = A + B
G = X + Y
D = C + E

Covering up a one cycle stall is relatively 
easy – but you have to be sure that 
executing out of order still preserves the 
correct answer.

29 Performance

Pipelining



Summary
Instruction Level Parallelism (ILP) also 
called pipelining, drives performance.

We want to break the instruction into parts 
(as many as possible) – such that each part 
is independent and takes the same amount 
of time.  Balanced pipeline

In such a machine the main limitations to 
performance are pipeline stalls.

Pipeline stalls have a number of sources
Insufficient hardware
Long latency steps – CPU or memory
Missing information
Removal or mitigation of those stalls is a 
major topic in ISA design.

30 Summary
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