
Pipelining: the key to
performance

How a computer works in theory

Operands fetched & placed in the registers
Instruction fetched from memory
Operation on registers
Result stored in RAM

A system working like that would be 1000s slower

The optimisations for a real system, make it harder
to write parallel computations – and we need to
understand them to understand parallel
computations.

2 Operation of a
processor

Pipelining

RAM

Registers

ALU

Next instruction
fetched

Operands fetched
from RAM

Instruction

Result

How to increase computer performance
We want to do as much work as possible in a given
time.

Seems simple; drive the clock faster and complete
more instructions per second.
Increase in clock speed 1940-2000 was certainly
useful but from the very early days the clock speed
was never the determining factor in processor
performance.

3 Schematic

Pipelining

Memory

Instructions move from
memory to the processor
in order

Results of calculations
are stored in memory

Programme counter
steps through memory
getting “next” instruction

Results of
calculations
redefine “next”

PC

Processor

Data required by the
instructions is moved to
the processor.

4 Details In fact this is gross simplification
The PC is pointing at location
000A000540130500
• The instruction needs to be transferred from

that location to the execution register
• The PC needs to be incremented to the next

location 000A000540130504 (an adder is
required)

• The instruction needs to be decoded
• The address of any operands needs to be

generated.
• The operands required to be transferred to the

input of the Arithmetic Logic Unit (ALU)
• The operation will be executed – (even in the

case of addition this is in effect many
operations
•

• The value of the PC may be modified – (a
branch instruction)

• The result of any arithmetic or logical
operation needs to be stored.

What is thought of as a single action turns out to
be a multi-part action

0 0 5 0 A 3 03 1 3 0 5 3 D 0 0

Pipelining

5 Parallel
The idea of performing different parts of the
instruction in parallel goes back to the Z1 and Z3.

It become popular with the rise of the
supercomputer in the late 60’s early ’70s

It is referred to as a pipelining more formally as
Instruction Level Parallelism (ILP)

The instruction stages are said to move down a
pipeline.

Konrad Zuse in front of a
replica of the Z3.
Deutches Museum
Munich

Pipelining

6 Stages
The names for the stages which the instructions
is split are referred to as

Fetch
Decode
Execute

The engineering design of the stretch computer
Erich Bloch
IRE-AIEE-ACM '59 (Eastern) Papers presented at the
December 1-3, 1959, eastern joint IRE-AIEE-ACM computer
conference

Abstract
“The Stretch Computer project was started in order
to achieve two orders of magnitude of improvement
in performance over the then existing 704.
Although this computer, like the 704, is aimed at
scientific problems such as reactor design,
hydrodynamics problems, partial differential
equations etc., its instruction set and organization
are such that it can handle with ease data-
processing problems normally associated with
commercial applications, such as processing of
alphanumeric fields, sorting, and decimal
arithmetic.”

The IBM stretch
computer.
IBM’s first
transistorised
supercomputer. Aimed
for two orders of
magnitude
improvement over any
existing machine

Pipelining

7 RISC Stages
The RISC pipeline – as described in Patterson and
Hennessey is

Instruction Fetch
Instruction Decode
Execute
Memory Access
Writeback

And the standard diagram which displays its
operation is

Pipelining

8 Register file
The RISC pipeline – as described in Patterson and
Hennessey.

The operands for the CPU to work on must be held
in registers a special place in the chip called the
register file. The results must be written out to a
register.

More about this later –
for the moment we assume that the data

is in the registers.

Pipelining

Instruction Fetch

“Store”

Instruction Memory

9 Fetch

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

The first stage is to place the next instruction into
the location in the CPU where it can be used to
drive computation.
Assumes the Programme Counter PC – contains
the next address of the next instruction
“Store” – deliberately ambiguous

PC

There is an assumption
that the instruction is
in the instruction
cache and can be
fetched in 1 cycle

Pipelining

Instruction Memory

Instruction Decode

“Store”

10 Decode

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

For a modern computer it is normal that
arithmetical operations can only affect the register
files. So values from two of the registers must be
transferred to the inputs to the ALU.
The instruction must assert suitable control lines
to the ALU

PC

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC will need to
be updated

Suppose the
instruction is
add $R3, $R4, $R5

64-bit ALU

Pipelining

Instruction Memory

Execute

“Store”

11 Execute

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

The ALU performs the requested operation and the
result will appear at the output of the ALU.
Here we may run into trouble with the time it
takes for the operation to complete.
Increment/compare etc. can clearly be completed
in one operation others may take longer.

PC

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC will need to
be updated

Suppose the
instruction is
add $R3, $R4, $R5

64-bit ALU

Pipelining

Instruction Memory

Memory Access

“Store”

12 Memory

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

This is the stage where memory is accessed if it is
required. For instance a load for an array involves
using the ALU to calculate an address using the
address of the start of the array and the offset of
the required element.

PC

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC will need to
be updated

Suppose the
instruction is
add $R3, $R4, $R5

64-bit ALU

Pipelining

Write Back

Memory

Instruction Memory

13 Write Back

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

64-bit ALU

Register File
0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

0 0 1 0 1 1 01 1 1 0 1 1 0 1 0 0 0 1 0 1 1 01 1 1 0 1 1 0 1 0

PC

PC will need to
be updated

Output of the ALU – transferred back to the
register file

Pipelining

Overlapping instructions
Instructions are divided into a number of
parts.

Idea is to fetch the second instruction while
decoding the first instruction.

… fetch the third instruction while decoding
the second instruction and executing the
third instruction

14 Pipeline

IF

ID IF

EX ID IF

3 2 1

Pipelining

Overlapping instructions
Clock cycle 1: Instruction 1 Fetch
Clock cycle 2: Instruction 2 Fetch

Instruction 1 Decode
Clock cycle 3: Instruction 3 Fetch

Instruction 2 Decode
Instruction 1 Execute

15 Pipeline*

Clock

IF

EX

ID

1

1

2

2

1

3

3

2

1

Pipelining

Pipeline balance

Each stage of the pipeline needs to take the
same length of time.
The advance through the pipeline will
proceed at the speed of the slowest stage.

In pipelining the latency does not improve
the time for the first instruction to complete
does not change.

Ideally after the pipeline is full an instruction
completes every tick of the clock

Anything that means an instruction cannot
enter the pipeline OR cannot proceed to the
next step reduces the speed of the processor.

16 Requirements

Pipelining

Pipeline

Each stage of the pipeline needs to take the
same time

17 Ideal

8 7 6 5 4 3 12

7 6 5 4 3 2 1

6 5 4 3 2 1

8 7 6 5 4 3 12Clock

IF

EX

ID

5 4 3 2 1

4 3 2 1

MEM

WB

Non-pipelined
Pipelining

Balanced pipeline
If it is possible to split the full instruction
into n equal sections each of which take 1/n
of the time – then in the steady state the
speed up is n.

If for example we have 8 instructions.

Non pipelined they take 5*8 cycles – 40.
Pipelined they the first instruction does not
complete for 5 cycles, and then they complete
every cycle – 12 cycles.
Speed up is 40/12 = 3.3

Thus even an “ideal” pipeline does not reach
the theoretical speed up for short
programmes.

18 Speed up

Pipelining

Pipeline

Pipeline stall in one stage looses an
instruction at every stage

This is known as a stall

19 Stalls

6 5 4 3 12

5 4 3 2 1

4 3 2 2 2 1

8 7 6 5 4 3 12Clock

IF

EX

ID

3 2 1

2 1

MEM

WB

Pipelining

Effect of a stall
The rest of the pipeline is unable to work.

A bubble propagates downstream from the
stall.

Instructions unable to proceed upstream of
the stall.

The result is that performance is lost.

For 8 instructions with a 2 cycle stall –
12 instructions becomes 14
a loss of around 15%

20 Stall

Pipelining

Causes of a stall
There are a number of things which cause a
pipeline stall.

The hardware is not available for the
operation to proceed.

To fetch the next operation we need to
generate a new PC (programme counter)
That means adding 4 to the current counter.
If the EX stage involves an addition then
either the EX will have to wait a cycle or the
next.

21 Causes of Stall

Pipelining

Information from earlier instruction not
available

C = A + B
if C > 10 jump <target>

OR
C = A + B
D = C + E

In both cases the value of C is not available
to following instruction, until it has been
written to registers.
That delays the next instruction by two
cycles.

22 Causes of Stall

PipeliningPipelining

Some part of the instruction takes too
long.

Multiplication takes longer than addition so
if the EX stage involves multiplying two
numbers it make take longer than adding
two numbers.

23 Causes of Stall

Pipelining

Accessing instruction or data takes more
than one cycle.

Retrieving a data item, an instruction or a
value from disk, may take hundreds of
thousands of cycles.

A disk spins at 10,000 revolutions per
minute.
If you just miss reading a location and have
to wait for the disk to revolve one more cycle.
1 revolution takes 60/10000 = 0.0006s
For a 3 GHz machine that is 200,000 cycles.

Ignoring any other causes of latency.

24 Causes of Stall

Pipelining

Preserving performance

A large part of ISA is concerned with the
prevention of stalls in the processor pipeline
or the mitigation of their effects.

In what follows we will spend a lot of time
talking about preventing stalls or minimising
their effects.

Complete one instruction per cycle

25 Performance

Pipelining

Mitigating stalls

One data transfer takes 200,000 cycles.

Start a transfer every cycle. After 200,000
cycles a transfer finishes every cycle.
400,000 cycles for 200,000 data words is 2
cycles/ word.
So 1 stall per word – if we can overlap the
transfers.

There is no machine that can perform
200,000 simultaneous reads/writes to disk:
but the principle of overlapping latencies so
that their total effect is mitigated is a good
one.

26 Performance

Pipelining

Transferring data in blocks.

It took 200,000 cycles for the disk to be
ready to transfer the word from disk, but the
word that immediately follows is available
immediately.

Transferring blocks of data quite often
means that after the latency to the first
word, subsequent words can be transferred
with far less latency.

So rather than 200000 transfers, getting 1
word each, we have the more plausible 1
transfer fetching 200000 words, with the
same average time.

27 Performance

Pipelining

Duplicating hardware
If we want to advance the PC on every clock
cycle we can introduce a dedicated PC
adder.

Now we always have a fresh PC, because
while the instruction is being fetched the PC
can be incremented.

This principle can be extended in other ways
as we shall see.
The PC must remain stable during IF – so we
might clock the PC register so it only
transitions on the clock pulse.

28 Performance

64-bit ALU

4 PC

Pipelining

Executing out of order
We need the result of instruction in order to
execute the subsequent instruction.
But we may be able to find an instruction
further on in the code which does not suffer
from this problem.
So

C = A + B
D = C + E
G = X + Y

But execute as
C = A + B
G = X + Y
D = C + E

Covering up a one cycle stall is relatively
easy – but you have to be sure that
executing out of order still preserves the
correct answer.

29 Performance

Pipelining

Summary
Instruction Level Parallelism (ILP) also
called pipelining, drives performance.

We want to break the instruction into parts
(as many as possible) – such that each part
is independent and takes the same amount
of time. Balanced pipeline

In such a machine the main limitations to
performance are pipeline stalls.

Pipeline stalls have a number of sources
Insufficient hardware
Long latency steps – CPU or memory
Missing information
Removal or mitigation of those stalls is a
major topic in ISA design.

30 Summary

Pipelining

