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More and faster
Ideally one would desire an infinitely large memory 
capacity such that any particular word … would be 
immediately available …. We are …. forced to 
recognise the possibility of  constructing a 
hierarchy of memories, each of which has a greater 
capacity then the preceding but which is less 
accessible. 

A.W. Burks, H.H. Goldstine
A.Von Neumann

Preliminary Discussion of the logical design of an 
Electronic Computing machine

Baby 1948: Limited by memory access time.
Apple II (1977) CPU: 1000 ns; DRAM: 400 ns

Since 1980 memory speed 
times 10
CPU speeds times 20,000

Memory
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Memory hierarchy

100s Bytes
300 – 500 ps (0.3-0.5 ns)

10s K Bytes
~1 ns
$1000s/ GByte

G Bytes
80ns- 200ns
~ $100/ Gbyte
DRAM

10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Tape

Files

Staged by
transfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Gbytes+

Upper Level

Lower Level

faster

cache cntl
64-128 bytes

Larger

Disk

Memory

Pages

L2 Cache Blocks

L1 Cache Blocks

Registers Words

infinite
sec-min
~$1 / GByte

Size
Access time
cost

100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L3 Cache



Fast access

Aim computer architect: To provide sufficient 
memory at an economic price.

Fast memory tends to be expensive and volatile.
Static RAM (SRAM)

0.5ns – 2.5ns, $2000 – $5000 per GB
Dynamic RAM (DRAM)

50ns – 70ns, $20 – $75 per GB
Magnetic disk

5ms – 20ms, $0.20 – $2 per GB
Magnetic Tape:

Needs loading – sequential read. 
Seconds – minutes

Ideal memory: cheap, fast, reliable, permanent.

Hierarchy :Lots of cheap storage – decreasing 
amounts of more expensive memory. Move from 
cheap to more expensive as required.

Accessing



Implementation

Implementation details of RAM, help to explain 
why we use both DRAM and SRAM

DRAM is very simple – 1 transistor and 1 
capacitor per bit.

Charged capacitor equals 1, uncharged 0.

Capacitor charge slowly leaks away.

Need to refresh (c.f. Baby). Read contents and 
write back.
Refresh done on chip. 
Multi-megabytes time problem, structure to allow 
to refresh a row with a single read/write.
Refresh overhead small.

Memory access is stored in a square array.
Access is done by specifying row number and 
column number. Chip takes row and column 
through input chips. (Pin count)

Access time is in the 10s of nanosecond. It stays 
in step with SRAM performance but a factor 10 
down.

ECC – Error correcting codes. On chip correction

Simple structure – cheaper to make per cell. 
Much smaller per cell.
Used for cache

DRAM

Readout on rising and 
falling clock edge.
DDR
Also how many bits per 
cycle. Data path width
DDR3 is 64bit

Cache



Implementation

SRAM access times are 1-5ns depending on the 
chip memory size.

Sufficient address lines to address all memory.
Memory smaller and used for main memory – so 
speed is vital.

Needs ~6 transistors per cell and so
is more expensive and takes up more
space than DRAM & more power

Why not run just SRAM? At almost any price 
point a combination of DRAM and SRAM will give 
better performance.

Low power SRAM typically same speed as DRAM

Again minimum times are given by minimum 
setup times, write enable is a not edge triggered. 
Pulse with minimum width for stable operation.

Output via shared line

SRAM

SRAM/DRAM cache, 
lots of development

Drive the clock too fast 
and memory becomes 
unreliable

Cache



Tri-state buffer

The data line is selected by a signal on the select 
line.
Once selected the Data line can be high (1) 

or low (0)

If not selected. High impedance mode – one can 
be read without the others interfering.

Modern RAM supports burst mode.
Provide starting address and length.
After setup sequential addresses are 

transferred once each clock cycle.

SRAM

SRAM/DRAM cache, 
lots of development

Drive the clock too fast 
and memory becomes 
unreliable

Cache



Error Correcting codes ECC

Memory bits can end up in the wrong state.

Cosmic rays can cause a bit to flip.
Higher memory density ® smaller cells ® less 
charge to flip a bit. More errors.

ECC memory has extra information to detect bad 
data.
Simplest is a parity bit. 1 per 8 bits. Makes the 
parity sum odd (or even).

Any single bit error can be detected (but not 
corrected). Flipping two bits produces a valid 
word.

Error correcting codes are more complex.
They add bits and define only certain bit patterns 
as being valid
.
In particular single errors produce codes which 
are only 1 flip from the correct sequence, but two 
flips from any other valid sequence.

Most common are Hamming codes

Memory controllers can implement forward error 
correction,   where the bad data is corrected 
before the data is transferred without referring 
back to memory

Errors

Number of 1’s is even 
or odd.

Error detecting

Language usually 
allows us to detect and 
sometimes recover from 
single character errors

Computer
computer
commuter

Cache



Cache Overview

Fetch from main memory is slow.
Fast memory is expensive.

Solution a hierarchy which has large amounts of 
cheap memory and closer to the processor, one or 
two stages of progressively faster memory the cache

But data still has to flow all the way down from 
main memory to the CPU. How does this save time?

Spatial locality
Temporal locality

How does the CPU/MMU know where to look in the 
cache for addresses which locate the 
data/instruction in main memory?

Main 
memory

Secondary 
cache

Primary 
cache

CPU

Cache



Locality
Move from cheap to more expensive as required …
if data is accessed only once or completely at 
random this would have little benefit.

In general programs memory access is rather 
highly constrained by the (observed) principle of 
locality.

Temporal locality
Items tend to be accessed repeatedly

During execution of a loop

Spatial locality
If the next item is not the same as the last it is 
likely to be nearby.
Code tends to be executed sequentially.
Data items in arrays are arranged sequentially.

Locality

Cache



Memory accesses as a 
function of time

Donald J. Hatfield, Jeanette Gerald: Program 
Restructuring for Virtual Memory. IBM Systems 
Journal 10(3): 168-192 (1971)
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Pre-fetch

Fetch item/instruction, plus surrounding items 
and they are likely to be useful.

Fetch done by independent hardware

Time wasted when not used, but only the time to 
fetch the real instructions. Pre-fetching unused 
instructions has no explicit overhead.

How does the Memory controller know where to 
find things?
What happens when a variable in cache is given a 
new value?

Items already in fast 
storage when required

Main Memory
L2 

Cache
L1 

Cache

Memory 
UnitCPU Address

Already there

Cache



Cache performance

When the CPU wants something already in cache 
that is a hit. If it is not in cache that is a miss.

Cache miss rate is a measure of how well the 
system is doing. 

Miss rate (per memory access) =   ___Misses___
Hits + Misses

May also refer to 
Misses per instruction = Miss Rate x _Accesses_

Instruction

But how bad is a miss?

<memory access time> 
= (Hit time) x(hit rate) + (Miss rate)*(Miss 

Penalty)

Where Miss penalty is the time to retrieve the 
item from further up the tree.

<memory access time> is still not as good a 
measure as execution time, but is useful for 
feature comparisons.

A Number of possible 
measures

Cache

Cache



A cache miss at  one 
level down can only 
be triggered by the 
level above cache or 
CPU.

Cache Actions

On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Cache can be multi-level. Up to three cache levels 
are available on some modern systems. 
Transfers between adjacent levels. 
Consider only two levels at a time.

Miss means that data is copied from the next 
level down into this level of cache.

Levels normally expense and speed of technology. 
At constant “technology speed” larger caches are 
slower. May split just for speed.

Misses

Cache



Execution performance

A cache miss, means the CPU needs to wait a certain 
number of cycles.

Miss Penalty = Access time + transfer time 

Execution Time 
= (Instructions + (Memory Stall Cycles))*period

= (Instr Count)*Accesses x (miss rate) x (penalty)
Instruction

Approximation – miss penalty is different for reads and 
writes.

Take an average ratio of reads/writes
Differs between programs.

Read rate and penalty, write rate and penalty.
Added complexity.

Increase transfer size.
May reduce miss rate, 
will increase miss 
penalty

Cache Effect

Improve CPU
Misses become more 
important.

Decrease base CPI:
larger proportion on 
stalls

Increase Clock
more cycles for a 
memory stall

Cache



Pentium 4

Level 1 (D-Cache): Capacity=16K, Access=4 cycles

Level 2 (D-Cache): Capacity=1024, Access 
=18cycles

Main memory (D-Cache) Access = 180cycles

Level 1 is longer than one would want in a MIPS 
machine.

Example

Cache



Caching terminology

Block (line): Unit of storage in the cache
Memory is divided into blocks – which map into cache 
locations.

Data Referenced:
Hit: Data in cache
Miss: Data not in cache – fetch it from higher level
May mean replacing something in cache

Design considerations:
Placement: where to place a block in cache
Replacement: what to remove (overwrite)
Granularity: block size, uniformity
Writes: action when value in cache is written to
Instructions & Data: Uniform or split cache

Basics

Cache



Sources of misses

Compulsory: First time access and the block cannot be 
in the cache.

Capacity: If the programme needs more memory than 
is present in the cache, then some blocks will be 
discarded and later retrieved,

Conflict: If the cache organisation means that two 
blocks of main memory are written to the same area of 
cache. One might over write the other even while 
there is room in the cache.

Coherency: requirement to keep multiple caches 
consistent.

A Number of possible 
measures

Miss types

Cache



Address sent
to memory

Where is a block in put the cache?

How is a block found in a cache?

If the cache is full and there is a cache miss which 
block in the cache should be overwritten?

What happens when the cpu wishes to write a value 
into a memory location. Either in the cache or not in 
the cache

Cache

Memory 
locations 0 to N

CPU 
Address 
Memory 
Location

s

Cache numbered 
0 to m



Mapping from memory to cache

Store everything on disk non-volatile
Disks performances.
Spin speed – latency.
Areal density
RAID – multiple reads
SSD’s – energy rather than speed.

Fetch items (and nearby) items from disk to 
smaller DRAM memory

Main memory – different speeds/cost

Fetch items (and nearby) items from DRAM to 
smaller SRAM memory

Cache memory attached to CPU

The fact disk is non-
volatile is a reason for 
using it

miss
miss ratio
miss
miss penalty

miss ratio + hit ratio = 1

When it comes to moving data into 
the cache – where does it go ?

Placement



Direct mapped: no choice

Location determined by programme address 
(Block address) modulo (#Blocks in cache)

If the number of locations in cache is a power of  
just Use low-order address bits

Pretty algorithm
But if you are 
unlucky will 
overwrite the most 
recently used block

How do we know which data in 7a5c of the cache 
is being stored. Store the address (just high order 
bits)
Tag:

At the start nothing in cache … for each block we 
have a valid bit = 0 data not present

bit = 1 data present

Direct

Cache



Everything from the address

Address =  4681924 = 004770c4
0000 0000 0100 1110 1110 00    001100    0100
Block address = 4681924/16 = 004770c
Block index = address mod 64 = 0c
Offset is 4 = 0100
Tag is 004770 …. Last digit is only 2 bits

64 blocks
16 bytes/block

Tag Index Offset
03491031

4 bits6 bits22 bits

Index to identify the 
block. Tag to check 
it is correct

Cache 
Addressing

Cache



Deconstructing the address

Index: 6 bits that means there are 64 
blocks in cache.

Offset: 4 bits which mean every block is 16 
bytes long (could be words)

The TAG is the rest of the rest of the 
address.

For a given value of index and offset – any 
value of the tag corresponds to a position in 
memory which will be stored at that 
location of the cache.

Tag Index Offset
03491031

4 bits6 bits22 bits

Cache 
Addressing

Cache



Total size for a cache

This showed blocks being 1 word – normally they 
are bigger – transfer extra data to utilise locality. 
Not too many or transfer time increases and 
hence miss penalty.
So each block has K words. K is a power of two 
for addressing. K words = 2^2*K bytes = 2^(k+2) 
The cache has 2^m blocks – again a power of 2. 
Block is then 2*(m+k) words or 2^(m+k+2) bytes.
32 bit address space – 2^32 bytes – 2^30 words
The cache is overloaded by 2^32/2^(m+k+2)
So the Tag must have 2^(32-m-k-2) bits  -which 
come from the high order of the address.
The byte offset inside the block is the first k bits 
of the address – and the intervening bits give the 
block address inside the cache.
Total cache size then needs to include in 
addition to the data/instruction word the tag 
bits and the valid bit 
.

Cache Size

Cache

Tag Index Offset
03491031

4 bits6 bits22 bits

64 blocks: 4 words
16 bytes/block
Overload is
2^(30-8) = 2^32



Cache Optimisation

Spatial locality indicates we should transfer large blocks 
of data.

Large cache is clearly good, but if size is fixed. 

Large blocks mean fewer blocks:
may overwrite block before it is finished 
with temporal locality

May lead to a higher miss rate;
more to be transferred so larger miss 
penalty

Cache too large and we will see degradation
Cache hit/miss
Hit … access data

Miss
Need longer to fetch so stall the pipeline
Fetch required data from the next level
Miss Type:
Instruction --- restart instruction fetch
Data --- Complete data access

Cache Size

Cache



Fully associative: Unlimited choice

The block can be stored anywhere

Set associative: Limited choice

The block can be stored in a number of locations
A set is a group of blocks in cache.

A block is mapped to the set, similar to direct mapped. 
In this case set is chosen by

Block address) modulo (#Sets in cache)

compare
(Block address) 
modulo (#Blocks in 
cache)

Here each set has two blocks so the 
data can be placed in either block.
Two way associative

Also 4-way, 8-way, …. Fully. 

Anywhere

Cache



Improvements with associativity

Increased associativity decreases miss rate
But with diminishing returns
Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

And increased complexity

Comparison

Be careful when comparing 
systems.
Block size improves hit rate
Associativity improves hit rate
Total size has the largest 
performance.
Comparisons must be on 
same size memory, not same 
number of blocks

Cache



Single associative means you get conflict misses, 
but checking the cache is simple

Simple bitwise comparison to say if the access is 
a hit.

Fully associative means there are never conflict 
misses. So saving bandwidth.
But looking for a hit either means 1 cycle for 
every index position in the cache, thus increasing 
the hit time – or multiple comparisons.

Cache is not about reducing miss rate – but 
reducing average memory access time.

Considerations

0 0 1 0 1 1 01 1 1 0 1 1 0 0 0 Memory 
address

0 0 1 0 1 1 01

1 1 0 1

Index points to correct 
entry

Reduce miss rate, 
but increase hit 

time

Cache



Replacement algorithm

Cache is full, which block  to throw out?

Direct mapped No choice. Simplest hardware.

Fully associative:
Random: easiest to implement. (Can use pseudo-
random replacement, so it is predictable and makes 
testing easier)

Least-recently used (LRU): exploiting temporal locality. 
Need to store access time.

First in First out (FIFO) :
Easier to implement that LRU.

LRU becomes harder as size increases.

Most common

Two blocks, LRU is just 
alternate. Finish a block.
Get another address, go 
to the other block, either 
the address  is there or 
write it there.  

For a large cache there is 
no difference. For a small 
cache LRU is better, but 
not by much.
Rate ~ 11% 
Difference < 0.5%

Block 
replacement

Cache



LRU
Seems like this must be the best – locality

But this means that you must keep the time for 
all accesses.
Further that you must be able to identify the least 
recently used block 

Clearly checking is time consuming 
n comparisons

Or keep a list associated with the time of last use 
1         010 …
2         111 …
3         000…
4         100 …
5         110 …
6         100 …
7         010 …

Block 
replacement (i)

This is used

Address 1 is replaced

Addresses 1 to 7  replaced

Cache



LRU

Or rewrite numbers

3 010 … 4 010 …                
6 111 … 7 111…         
2 000… 3 000..
1 100 … 2 100..
7 110 … 1 110 ..
1 100 …         6 100 ..
4 010 … 5 010 ..

You still need to overwrite a number of locations 
(increment mostly)
And now when you are throwing one out you have 
to search for the largest number. Miss penalty 
getting larger.

One might look to throw out blocks whose 
contents have not been changed – but that 
depends on the strategy for updating values in 
cache that are changed.

Block 
replacement (ii)

Cache



Replacement algorithm

Least recently used is intellectually appealing but
it is more complicated to implement and makes 
very little difference.
Increasing associativity has a small effect, cache 
size dominates.
64 to 256 is rather small and there will be a time 
penalty for the increased size

Block 
replacement

Assoc:       2-way 4-way 8-way
Size LRU     Ran      LRU Ran          LRU
Ran
16 KB 5.2% 5.7% 4.7%     5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5%     1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12%
1.12%

Cache



NMRU
Not most recently used – just needs 1 bit
Victim – Next Victim
2 blocks status tracked in each associativity set
V (victim) – NV (next victim) – others are O(rdinary)
On cache hit
Promote NV to V
Promote an O at random to NV
Return V to 0
On cache miss
Replace V
Promote NV to V
Promote an O at random to NV

NMRU – means you are guaranteed not to kick out the 
last used block and V/NV means that you won’t kick 
out either of the last two.

Locality means that correlations are only short range.

Approximations 

Cache



Actions on a cache miss
A dedicated controller which:

Performs the memory access and fills the cache
Creates a stall (cf pipeline stall), not an interrupt.
Stall whole processor – easier than pipeline stall, 
but much more costly for performance.
After a miss the instruction register does not 
contain a valid instruction. So:
1.Set the PC to PC -4; points at instruction which 
generated the miss
2.Request read from memory and wait for 
completion (many cycles)
3.Write the data to cache; writing the upper 
portion of address (from ALU) to the tag field, set 
the valid bit
4.Restart execution.
Instruction is resent and this time results in a 
hit.

Interrupts requiree 
register store

Cache miss

Cache



cache example
A dedicated controller which:

Performs the memory access and fills the cache

Writing

Cache

Write-Through Write-Back
Policy Data written to cache also 

written to lower level 
memory

Write data only to the 
cache. Update lower level 
when block falls out of the 
cache

Debug Easy Hard

Do read misses
produce writes?

No Yes

Do repeated writes 
make it to lower level?

Yes No



Cache Hit
Write through cache 
Options
Update the cache   But  memory inconsistent

Could update memory as well.
But time consuming

Base CPI is 1, then write to memory is around 
100 cycles             12% of instructions are stores

Solution: 
write buffer: holds data to be written to memory
CPU has no need to wait
stalls on write only occur if write buffer is full

Write back
If there is a write hit, only update the cache
Keep track of dirty blocks

When a dirty block is overwritten
Write it back to memory

Cache miss
Allocate on miss: read the block into cache
Write around: don’t fetch the block.

SpecInt92 benchmarks 
on Intel x86

Assume all other 
instructions are single 
cycle
Effective CPI 
= 0.88*1 + 0.12�100 
= 12.9
Significant slow down

Cache writing

Cache



Cache write

CPU doesn’t stall on a write.
Write not just the register, but a number of writes

more localisation. Writes tend to come in bursts.

Creates potential RAW problems.

Spec2000 10% are stores. Store is 100 cycles.

100 instructions which are 100 cycles without store.
Becomes 90 (no store) + 10*100 (memory access) + 10(store 
execution) = 1100 cycles. 

Loose a factor of 11! 

Replacement strategies .1% - means .1 instruction or 10 
cycles per 100 cycles or 10% slow down.
Not quite as insignificant as first appears.
.

SpecInt92 benchmarks 
on Intel x86

Write buffers

Processor
Cache

Write Buffer

Lower Level Memory

Cache



Separate Instructions and Data (eg MIPS)

I-Cache D-Cache 

Different requirements
Eg no write-back
Can access both instruction and data 
simultaneously

I-Cache miss  rate  0.4%
D-Cache miss rate  11.4%

Spec2000 benchmarks 
on Embedded MIPS

Split Cache

Cache



Performance

Main memory is DRAMs. Size not speed
Bus clock from memory to cache is slower 
than CPU clock. 

1 cycle to transfer address
15 cycles per DRAM access
1 cycle per word transfer

For 4 word cache block

Cycles are 1+4*15+4*1 = 65 cycles 
Miss penalty

16/65 bytes/cycle = 0.25

Increase bus width to 4 words
Cycles = 1+15+1=17

So width of the memory to 
cache bus has a dramatic effect 
on the cache penalty
bytes/cycle = 0.48

Larger block bigger 
penalty.

Remember this is only 
one part of the 
performance.

Main Memory

Cache



Higher Performance

Four bank interleaved – no increase in data path

Cycles are 1+15+4*1 = 20 cycles

Other possible improvements

Burst mode: only need full access time for
first word. Subsequent words faster

DDR: transfer on the rising and falling clock
edges. (Double Data Rate)

QDR: separate input and output on DDR

Quantitative
Need not transfer rate memory to cache, but on overall 
performance.

Memory stall cycles from cache misses = 

Memory accesses/program * Miss rate  * Miss penalty
equivalent

Instructions/program * Misses/instructions * penalty

Average memory access time (AMAT)
= Hit time*Hit rate + Miss rate �

Miss penalty

Eg hit time is 1 miss penalty is 20. Miss rate is x
What rate doubles the memory access time?

1*(1-x) + 20x = 2
19x = 1 x = 0.052

Year Size $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Source: Patterson
Computer Organisation 
and DEsign

Memory 
organisation

DDR transfers on rising 
edge and falling edge

QDR separate inputs and 
outputs.

Cache



Effect on Performance

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI
Greater proportion of time spent on memory stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating 
system performance.

So in all improvements in processor performance 
will not translate into execution time 
improvements unless the cache performance 
keeps pace with the CPU

Penalty

Cache



Cache optimisation

How can we distribute our resources in the cache 
so as to improve system performance.
<average access time> = 
(Hit time)*(Hit rate) + (Miss time)*(Miss rate) 

1.Reduce miss rate r
2.Reduce miss penalty T
3.Reduce hit time t

<t> = t.(1-r) + T.r
= t – rt + Tr

If            t(1-r) = Tr equal contributions

t – tr = Tr ->      1 – r = r.T/t

1/r – 1 = T/t ->      1/r = T/t + 1

r = t/(t+T) for t<<T

r~ t/T

Hennessey has a 
simplified version

Rate is a fraction

r > t/T. Reduce r or t
r < t/T  reduce T

Optimisation

Cache


