
Chapter

Cache Coherence

2

Caches in multi-processor systems

Cache is for temporary storage and fast access of
data and instructions.
For data the contents of cache and the contents
of memory may not be identical if the data item
has been updated.

What happens if we have more than 1 core
• the core can be common to all cores
• each core can have its own cache

Common cache
All cores have the same view of the data
but
access the cores become a problem …
• the cache must allow for multiple

independent accesses, or cache access will
become a bottle neck. (Expense and
complication)

• the amount of cache for each core is
effectively reduced (increasing cache sizes
causes its own problems

Multi-
processor

Cache

Private data – access by one processor to improve
performance as for single processor.

Shared data – replicated in multiple caches.
Reduces access time, memory bandwidth plus
contention.

BUT introduces the problem of cache coherence

How to ensure that all processors see the same
data.

Two interlinked problems.

Coherence defines values returned by a read

Consistency determines when a written value will
be returned by a read.

Consistency when – coherence how

3 Cache

Actually even defining
what is meant by seeing
the same data is not
trivial.

Cache Coherence

Multi-core machine.

Each core has its own cache. (L1)

Shared cache -> multiple simultaneous
read/writes.

For n cores you expect to need n times as much
cache.

Bigger cache means slower performance

Simple cache local to each core provides best
performance at least at level 1.

Level 2 cache is larger and is not accessed by every
core for every instruction.

Level 2 tends to be shared

4 Cache

Cache Coherence

Data (instructions) read from memory causes no
problems.

A value in memory duplicated in one or more
caches.

Writing values to memory locations causes
problems.

Single processor time taken

Multi-processor consistency.

Options

Write back: cache is updated. Memory is only
updated when cache line is over written. Multiple
writes to cache only require one write to memory.

Write through: write operations to main memory
as well as cache. Cache line replacement does not
provoke a write.

5 Cache write

Cache Coherence

6

Maintaining coherence

Can use a directory protocol or a snooping
protocol

A directory protocol is centralised, a snooping
protocol is distributed.

Snooping
Each cache controller must have intelligence to
be able to generate and respond to messages
from other cache controllers. They collectively
respond to a core’s request for a data item with
the owner of the item returning the item.
They depend on the performance of the
interconnection network, which must deliver
broadcasts in a consistent order

Directory protocol
Cache controller’s unicast to the memory
controller that is home to the block.
Memory controller maintains a directory for each
block.

Coherence

Cache

Write back: Write through:

Line loaded into cache, which had been updated in
another cache – only problem with write back

but any cache which already has data has a
problem, no matter which option is used.

Software solution

Compiler identifies places where data may be
unsafe for caching. OS prevents them from being
cached.

Enforces repeated reads from memory, even when
it would have been safe to use a cached value.

Hardware simple

Hardware solutions:

Directory Snooping

7 Cache write

Cache Coherence

Snoop

To pry into the private
affairs of others,
especially by prowling
about.

Directory based:

Centralised controller (part of main memory)

Directory in main memory

• keeps information about data in the local
caches.

• issues commands to transfer data between
caches and between memory and caches

• local actions with global impact, must be
reported to the controller.

Overhead higher, but scaling better. Good for large
scale systems with multiple buses.

Status of a block in central location – single point
of failure

8 Options

Cache Coherence

Snooping:

Cache with a copy of the block has a copy of the
sharing status of the block – no central directory

Caches all available via a bus or switch.

Update actions on cache must be broadcast.

All controllers monitor (snoop) the bus or switch to
see if they have a copy of the block.

Suitable for a single bus based system.

Local caches reduce bus based traffic, the
broadcast/snoop has the potential to nullify this
advantage.

Two approaches: write invalidate; write uppdate.

9 Options

Cache Coherence

Directory has a global view of the system.

Individual cache controllers request access via the
directory which issues commands to transfer data
between caches and between caches and memory.

A core wants to write to a cache location.

It sends a request to the directory. The directory
sends a message to all cores which have that cache
line, warning them that the contents are no longer
valid.

It receives acknowledgements to all messages, and
grants the requestor exclusive access to the line.

A core that wants to read a value from a line for
which another core has exclusive access sends a
request to the directory.

The directory provides an up to date line to the
requestor – cache to cache copy; write back to
memory and then fill from either memory or cache.

10 Directory

Cache Coherence

11

Maintaining coherence

Directory protocol
Cache controller’s unicast to the memory
controller that is home to the block.
Memory controller maintains a directory for each
block, with information such as current sharers
of a block, or current owner of a block.

So it responds to the request for a data item
either by satisfying the request or by forwarding
it to the cache controller which owns the data.

Snooping is simpler, but it doesn’t scale well.
Directory protocols tend to be slower when an
extra message is generated to satisfy a request

Coherence

Cache

Cache with a copy of the block needs to know if
any other cache has a copy of the block.

If a core wants to update a value in a cache line. It
broadcasts this fact.

Options are write update and write invalidate.

Write invalidate:

The cache line is then “owned” by the writing
process. It can continue to make updates until
another core needs the line. Another core which
needs the line, must request it and the line reverts
to shared. At this point the memory can either be
updated and the cache filled from memory, or the
requesting cache can be updated from the modified
cache. May have a dedicated invalidate bus

Write update:

the cache which wishes to write into a cache,
broadcasts the new value and this is used by other
controller to update the appropriate line in their
cache and in memory.

12 Snooping

Cache Coherence

We can use write
through in which case
the memory is already
up to date

13

Dedicated cache

Need to ensure that all cores have the same view
of the data

This is referred to as cache coherence

It means that when any core accesses any item
of data, it must get the same value.

(Normal problems of parallel calculations which
require access to the same items of data and
these need to be addressed separately.)

Multi-
processor

Cache

14

Consider the following situation.

Processor 1 requires a data item A and it is not
in any cache.
1 fetches A from memory and uses it, but does
not change it.

Processor 2 requires A and it is not in its cache.
Processor 2 may get the item from processor 1’s
cache or from memory. It has to know processor
1’s cache has the data item.

What happens if either 1 or 2 change A. Don’t
want to force an update to both caches, because
we don’t know that the other processor will ever
want A again. If they do, then they have to get
the value from the correct place.

How to ensure that the correct value is available
to all processors, while still maintaining the
performance advantage of the cache.

Multi-
processor

Cache

15

How to communicate what is going on?

No central information.

View of the system different from every machine.

Behaviour is emergent

Multi-
processor

Cache

16

Illinois Protocol

Each cache line has a 2 bit tag encoding one of
four states

Modified Exclusive Shared Invalid

Exclusive
Present in the current cache and its value is the
same as the value in memory – clean

Shared
The cache line may be stored in other caches
and is clean

Modified
Present in the current cache and its value is the
different from the value in memory – dirty. The
value must be written back before the main
memory can be accessed by another core

Invalid
Cache line is invalid (unused)

MESI

Cache

State when first
in cache

17

The caches share a common bus to main
memory. Aim is to minimise accesses to the main
memory.

The first time that a value is requested by a core
(1), then it is copied into the local cache and
marked exclusive.
Subsequent requests from that core are satisfied
by that cache.

A request from another core (2) is intercepted
and satisfied from the existing cache. The cache
line in both caches is marked as shared.

Repeated requests from cores 1 and 2 are
satisfied from their local cores. A request from a
third core can be satisfied from either cache. All
three caches will marked as shared

MESI read

Cache

Actions on read

18

An write is made to a cache line which is in
exclusive state.
The value is changed in cache and the tag is
changed to modified.

Modified means that at some point the data in
memory must be updated.

An write is made to a cache line which is in
shared state.
The value is changed in cache and the tag is
changed to modified and the state of any that
line in any other cache is set to invalid.

A read from any cache line marked as invalid,
must be satisfied by fetching the data from the
modified cache.

For a cache to be set invalid. Either the cache
which is moving to the modified state, must
broadcast, Request For Ownership or the other
caches must snoop on the write lines of all other
caches and mark their own caches as invalid as
appropriate

MESI write

Cache

19

As with single core caches it may be necessary to
overwrite a line.
If the cache line is shared or exclusive, this may
be done at any time

If the cache line is modified, the value in memory
must be updated before the value is overwritten.
Writing the value to memory delays fetching the
value from memory.
Provide a write buffer to store the modified value.
Write buffer must also snoop to pick up any
requests to modified value before data is moved
from write buffer to main memory

The caches must all snoop on the read/write
requests to ensure that the tag bit stays up to
date.

Exclusive listens for read and switches to Shared
Modified listens to read and arrange the most up
to date value to be returned: either by returning
the value; or by forcing the read to pause and
writing the value back to main memory.

Cache full

Cache

A single core can try to read or write a value into a
cache line.

Four possible outcomes

Read Hit, Read Miss, Write Hit, Write Miss.

Read Hit: the data word is in the local cache. The
word is transferred to the register.

Remains M, E, S as it was before.

20 Operation

Cache Coherence

A single core can try to read or write a value into a
cache line.

Four possible outcomes

Read Hit, Read Miss, Write Hit, Write Miss.

Read Miss:

• No other cache contains the line. Reads the line
from memory and sets that line from I to E

• If exactly one other cache has a clean copy (it
will be E) it returns a message that it has a copy
of this line. It moves from E to S. The requesting
cache fetches the line from memory and marks
it S.

• If more than one cache has a copy they all
respond and the requesting cache fetches the
line from memory and marks it S

• If one cache has the line in an M state. It blocks
the read and returns the modified line to that
cache, this modified line is also picked up my
the main memory which updates the values.
Both caches set the value to S

21 Operation

Cache Coherence

A single core can try to read or write a value into a
cache line.

Four possible outcomes

Read Hit, Read Miss, Write Hit, Write Miss.

Write Miss:

• Signals on the bus a Read-With-Intention-To-
Modify. When loaded it is marked M. If no other
cache has a copy, then none responds. It one
other has a clean copy in the E state it
invalidates (I) it. If several others have the line
in S they all mark it I.

• If another cache has the line in the M state, it
responds warning the requestor that it has a
modified copy and the requestor releases the
bus. The core with the line in the M state writes
it back to memory and then marks its copy I.
The requestor then issues another RWITM
which receives no response and loads from
memory as before.

22 Operation

Cache Coherence

A single core can try to read or write a value into a
cache line.

Four possible outcomes

Read Hit, Read Miss, Write Hit, Write Miss.

Write Hit:

• M it must already have exclusive access to this
line, which it has already modified. It modifies it
again.

• E with exclusive access it simply moves to the M
state and updates the value.

• S signals on the bus and the other copies are
marked as I∫. This one moves to M.

23 Operation

Cache Coherence

24 State Diagram

Cache Coherence

Dirty line copyback

Invalidate transaction

Read-with-intent-to-modify

Cache line fill

RH Read hit
RMS Read miss, shared
RME Read miss, exclusive
WH Write hit
WM Write miss
SHR Snoop hit on read
SHW Snoop hit on write or

read-with-intent-to-modify

Figure 17.6 MESI State Transition Diagram

Invalid Shared

Modified

(a) Line in cache at initiating processor

RH

WH

RH

RH

Exclusive

RMS

WH

SHW

SHW

RME

SHR

Invalid Shared

Modified

(b) Line in snooping cache

Exclusive

SH
R

SH
W

W
M

SHR

W
H

Above is a state diagram which describes the MESI
protocol.

Each processor has its own state bits and will have
a different view of the system

Atomic Instruction (sequence).

Retrieve and change

Used in software – construction of complex
synchronisation schemes.

Simplest atomic exchange

Swap the values of a value in memory with a value
in a register.

Set the value in register: Swap

value in memory is value that was in register

value in register is value that was in memory.

Lock Memory Value Meaning

A 0 Free or unlocked

B 1 in use or locked.

25 Locks

Cannot be used for
synchronisation

12 MP

Want to acquire a lock

Store 1 in a register

Swap with a memory location. Atomic.

Memory now must contain 1.

No new process can acquire the lock

Check register

if 1. Was already in use. Try again

if 0. Not in use. Can use.

At end store 0.

Other methods are test and set.

set 1 if value is 0

Also fetch and increment.

0 free. >0 in use.

26 Locks (i)

Single ops

12 MP

Link register – special register.

Load linked – sets value in the link register to the
memory address

Link register is reset on a context switch

Load link fails if the link register is set.

Store conditional works only if the link register has
the store address.

27 Locks (ii)

Multiple ops

12 MP

How consistent?

Strange question …. But not a true/false question.

What we naively expect.

Any write instantaneously updates the state of any
copies in cache (and memory).

Insisting on this means pausing while time for
actual updates occurs and hence slowing system.

In fact the only important processes are writing and
reading.

We can ask if the four possible orderings relaxed

Write must complete before Read

Write must complete before Write

Read must complete before Write

Read must complete before Read

28 Consistency

Allow R and W to
complete out of order
and use sync to enforce
ordering.

Faster execution

More complex design.

12 MP

Use speculation to hide latency from cache
coherence.

Similar to use in uni-processor.

Rapid review of the problems of multiprocessor
architectures and description of the basic ideas
needed to solve them.

Application of these ideas is far from simple -
Hennessey has a good description of them and is an
excellent source book.

Development here is consistent with Hennessey .

29 Speculation

12 MP

