
Cache
Optimisation

“sometime he thought that there must be a better way”

Cache Optimisation
1. Reduce miss rate

a) Increase block size

b) Increase cache size

c) Higher associativity

d) compiler optimisation

e) Parallelism

f) prefetching (hardware and compiler)

2. Reduce miss penalty:

a) Multilevel caches

b) Write through cache

c) critical word first

d) merging write buffers

e) Parallelism

f) prefetching (hardware and compiler)

g) increase cache bandwidth (pipelined, multi-
banked, non blocking) caches

3. Reduce hit time:

a) small simple caches

b) way prediction

c) trace caches

2 Optimisation

Optimisation

Which c is responsible?

From Patterson

Compulsory : Small

Capacity : Major

Conflict:

Four-way associate, is the
extra misses going from 8
way to 4 way associate

3 Sources

Optimisation

Increase block size

At a given cache size, increasing block size firstly
reduces miss rate.

Compulsory misses drop because of spatial
locality.

Reduce the number of blocks in a cache. Increase
conflict misses and capacity misses.

Increases miss penalty (more data to transfer).

Penalty = latency + bandwidth.

The optimum is a balance.

4 Technique 1

Optimisation

Technique 3

Larger caches

Longer miss penalty, longer hit time (address
decode).
More complexity; power, expense.

Higher associatively

Reduces miss rate.

No point in going beyond 8 way

Heuristic: Direct mapped cache size N has the
same miss rate as a two way associative cache of
size N/2.

Greater hit time.

5 Technique 2

Optimisation

Multilevel caches reduce miss penalty

Choice is larger cache – miss rate decrease

Faster cache – miss penalty decreases.

First level cache small enough to match clock
cycle.

Second level cache faster than main memory

Performance analysis becomes far more
complicated

<memory access time> = H1 + M1 * R1

This assumes that the miss penalty is the extra
time for a cache miss – time to access for a miss
is H1 + M1

M1 = H2 + M2 * R2

<t> = H1 + H2 * (1 – R2) + M2 * R2

We immediately have
a problem comparing
different features

6 Technique 4

Optimisation

Multilevel caches (i)

Local Miss Rate: The number of misses divided by
the total number of accesses to the cache. RL1 &
RL2

Global Miss Rate: The number of misses divided
by the total number of accesses by the processor
RL1 & RL1*RL2

Be careful about interpreting the local miss rate
at level 2. If the programme fits into Level 1
cache, the only accesses to the second level cache
may be the compulsory ones. RL2 would then be
100%.

Level 2 is best assessed via the global miss rate.

Better is <Average memory stalls/instruction>=S

S = RL1 * HL2 + RL2*ML2

Combining reads and
write times into a
global average

7 Technique 4

Optimisation

Cache requirements

L1 cache needs to be accessible in one clock
cycle. Complications & size need to be restricted
so that the cycle time can be as fast as possible.

L1 affects the clock time.

L2 speed only affects the Miss penalty. It needs to
be large (L1 is a subset of L2).

Having two caches breaks the connection to the
clock rate and allows more flexibility.

Should Level 2 cache include all the contents of
Level 1 cache? Multilevel inclusion.

Useful for cache
coherency

8 Cache 1 & 2

Optimisation

Multilevel inclusion

Implies

L1 much bigger than L2 Þ local miss for L2 will
be high.

If not in L1, then not likely to be in L2. L2 only a
little bigger than L1. If in L1 no reference to L2

L2 sees the compulsory misses and L1 picks up
the repeat references.

Should the L1 block size be the same as the L2?

Architecturally it often looks as if L1 should be
small blocks, L2 large ones. So no …

For ease yes …

If not L1 gets a cache miss

L2 gets a cache miss

L2 fetches from memory and replaces

Several L1 blocks are now not valid

Increases L1 miss rate.

Potential to invalidate
several L1 blocks

L1/L2 interactions
may affect miss rates.

Pentium
L1 64 bytes
L2 128 bytes

9 Cache 2

Optimisation

Multilevel exclusion

Used especially where L2 is not that much bigger
than L1.

L1 data is never found in L1 and vice versa.

If L1 data is never found at L2.

So a cache miss in L1 and a hit in L2, causes a
block in L1 to be exchanged with the required
block at L2.

L2 will have far fewer hits than L1

(If not miss rate at L1 must approach L2)

L1 should optimise hit time,

While L2 needs to minimise miss rate.

i7 has three levels of cache.

L1 32kB: L2 256kB: L3 8Mb

e.g. AMD Opteron

L1 and L2 should not
be optimised in
isolation

Local cache and global
cache. Coherency

10 Cache 2

Optimisation

Write through cache

Include a write buffer, so CPU does not have to
wait for write to complete.

n) Store value in a memory location which
corresponds to a block of a level 1 caches block.

Fill write buffer and proceed

n+1) Load value from a memory location which
maps to the same cache block. Cache miss, fetch
from level 2

n+2) Load memory location written at n), another
cache miss (updated value). Miss at L1 and L2.
Go to memory and load. Has the write buffer
completed?

Solution: with a read miss either

wait for the write buffer to empty

or check the addresses in the write
buffer.

11 Write
through

Optimisation

Avoid address translation during indexing of
the cache to reduce hit time

The addresses of the programme on disk are
virtual addresses. They must be translated to a
physical address in order to be placed in memory.

Suppose instead of doing a translate to physical
address and use the physical address to
determine the cache position we use the virtual
address!

That still leaves open which address we use for
the tag.

Both address and tags and we have a

virtual cache.

But with a virtual cache every context switch
changes the virtual Û physical mapping.

So the cache must be flushed.

12 Technique 6

Optimisation

Effect of purge on miss rate

Flushing the cache on context switching.
reduces the effect of cache size.

Add PID to the tag

13 Purge

Optimisation

Tag the cache with the Processor ID

Increase the width of the tag and include the PID
of the process that wrote it.

No purge – check PID and if the same use.
Otherwise signal a miss and read the correct
block

Finally the OS (or the programme) may refer to
the same physical location with two different
virtual addresses. This can lead to inconsistencies

This can either be solved in hardware or software.

Finally I/O is usually done on physical addresses,
so translation must be done there as well.

Here optimising the common case may cause
significant complications and slow downs
elsewhere.

14 PID tag

Optimisation

Simplify the L1 cache

Time consuming part:

index portion of the address to read tag
memory and compare it to address.

Smaller hardware faster …

Simpler hardware faster …

Increase cache speed rather than size and hiding
L1 misses with dynamic execution.

L1 optimise hit time

15 Technique 7

Optimisation

Simplify the caches

Keep L2 small enough to fit on chip.

Direct map cache is the simplest,

overlap tag check with data transmission

Can keep tags on chip and data off chip

Slower L1 means slower clock cycle, which slows
everything, not just memory accesses./

Off chip
communication
slower

Compromise
Example p295

16 Technique 7

Optimisation

Way prediction: reduces hit time

Each block in cache has block predictor bits.

Which block to access on the next cache access.

Multiplexor set early for block selection.

A single tag comparison performed in parallel
with reading the cache data.

A miss and normal checking is done on the next
cycle.

Can get accuracy considerably above 50%.

Used in speculative processors which undo other
actions.

See pipelining

17 Technique 8

Optimisation

Pipeline cache access

Higher latency, but higher throughput.

Faster clock cycle, but greater penalty on wrong
branch predictions.

Another example of optimising the common case.

18 Technique 9

Optimisation

Non blocking cache

If the processor does not stall on a cache miss,

It can proceed

if the cache can continue to supply data while
reading from L2cache/memory

Non-blocking / lockup-free cache.

“hit under miss” reduces the effect of a miss.

Overlapping multiple misses is even better

CPUs that support
out of order
completion.

But the memory
must be able to
supply more than 1
misses.

8kB data cache
spec92

Integer programs

19 Technique10

Optimisation

Non blocking cache evaluation

Cache miss may or may not Þ processor stall

Calculating the miss penalty is difficult.

So we cannot (reliably) calculate the average
memory access time.

Effect depends on:

a) miss penalty for multiple misses

b) Memory reference pattern

c) Processor performance with outstanding
misses.

8kB data cache
spec92

Integer programs

The more complex
the CPU, the more
the application
becomes the
benchmark

Non the less the
gains are real, as are
the complexities.

Reduces L1 miss
penalties, but no
effect on L2

20 Technique10

Optimisation

Multi-banked caches

Divide cache into multiple banks. Each one can
be individually addressed.

Organise banks so multiple paths can be used.

One way is sequential interleaving.

If you want to access a block = 1 modulo 4, you
want to be able to do it with a single access.

21 Technique11

Optimisation

Start from a miss as soon as possible

A miss transfers a block or words

(penalty is latency + blocksize/bandwidth)

(normally) the processor needs just one word to
restart.

So either transfer the word to register as soon as
it arrives early restart and continue filling block
while CPU resumes.

Or explicitly get the requested word first critical
word first and again continue to fill.

Locality Þ other words in the block are likely to
be needed as well – actually if the access are
sequential in the block there may be little
difference between the two methods

More complex …
better?

Likely to be useful
with large blocks

22 Technique12

Optimisation

Merge write buffers

Write through cache and write back cache both
use write buffers.

For a write buffer with space the data and
physical address are written. CPU is finished and
the buffer starts the writing process.

If the buffer is full the CPU has to wait.

On write, check if an address is already in a block
waiting to be written (temporal locality). If there is
merge. More updates done on a single write, less
chance of the buffer filling.

Compromise

Merging problematical with
I/O buffers, because the I/O
registers do not act like a
block of memory.

Includes reducing miss
penalties (no stall on buffer
full). Does not fit into the
taxonomy.
Not optimising the common
case. Writes are rare. Although
merging depends on common
case. Writes are sequential.

23 Technique13

Optimisation

Compiler optimisation

In the early days programmers optimised memory
accesses by hand.

Drum memory long latency

arrange words for sequential access so
that the next word is under the read head when
required.

The programmers built the machine.

Now the manufacturers will provide compilers to
do analogous things.

Warning

Benchmarks are well established, stable, a sitting
target. Manufacturers write compilers which
return good performance for benchmark
programs. (may even have special switches).

24 Technique14

Optimisation

Compiler optimisation

Loop interchange

for (int j=0; j < 100; j++) {

for (int i=0; i <5000; i++) {

x[i][j] = 2 * x[i][j]

}

}

for (int i=0; i < 100; i++) {

for (int j=0; j <5000; j++) {

x[i][j] = 2 * x[i][j]

}

}

25 Technique14

Optimisation

Compiler optimisation

Block alignment

for (pnt=0; pnt < 400; pnt++) {

……..

……

}

If the compiler puts the beginning of the loop at
the beginning of a cache block we are likely to
load many of the instructions we need with a
single load

Branch straightening

if () then {

} else

}

If the else block is normally taken, then reorder
so code immediately follows if in memory.

Likely to be in same cache block

Code Block

Code Block

26 Technique14

Optimisation

Compiler optimisation

Blocking

for (int row=0; row < N; row++) {

for (int col=0; col < N; col++) {

for (int pnt=0; pnt<N; pnt++)

x[i][j] = x[i][j] + y[i][k]*z[k]j]

}}}

Neither row order nor column order will work
here.

All three matrices should ideally be held in cache.

Want the row of y and the col of z as a minimum.

If the cache can hold submatrices of size B by B

Step through in those sizes.

Light: old accesses
Dark: recent accesses
White: not touched

27 Technique14

Optimisation

Compiler optimisation

for (int bCol=0; bCol<N;bCol = bCol = bCol+B) {

for (int bPnt=0; bPnt<N;bPnt=bPnt+B) {

for (int row=0; row < N; row++) {

for (int col=bCol; col < min(bCol+B,N); col++) {

for (int pnt=bPnt; pnt<min(bPnt+B,N); pnt++)

x[i][j] = x[i][j] + y[i][k]*z[k]j]

}}}}}

y benefits from spatial locality and z from
temporal.

Light: old accesses
Dark: recent accesses
White: not touched

These techniques go
back to pre-cache
days where people
would hand code
inner loops to
improve performance
in critical areas.
Keeping variables in
the registers

28 Technique14

Optimisation

Compiler controlled prefetching

Miss penalty or Miss rate.

Compiler analyses code. Identifies instructions
and data which can be loaded before needed.

Inserts instructions into the code which causes
these to be loaded ahead of time.

Register prefetch

Cache prefetch

Either can be faulting or non-faulting (non-binding)

Non-faulting turn into nops if they would cause
an exception.

We want prefetches to operate silently. They must
not interfere with the normal running of the
processor. They should not change contents of
registers and memory and cannot cause virtual
memory faults.

Normal for modern
machines

29 Technique15

Optimisation

Compiler controlled prefetching

Overlap execution and fetch.

Loops are a good target.

Either:

loop unroll a couple of times

Or

loop unroll many times or software pipelining

Prefetch speedup for
Pentium 4. The best
results for specint2000
(2/12) and specfp2000
(9/14).

Miss penalty small

Miss penalty large

30 Technique15

Optimisation

Out of order CPUs

Execution may be possible during cache miss.

Pending store stays in the register (or special
register.

Instructions which require results of instructions
affected by cache miss, wait to start execution.

Independent instructions continue.

Misses have an effect very difficult to estimate or
even measure.

Depends on program, depends on compiler
efficiency.

Depends on algorithm

31 Algorithm

Memory stall cycles = Misses x (total miss latency – overlapped miss latency)

Instruction Instruction

Optimisation

Quick sort v Radix Sort

Algorithmically radix sort is better.

Visible for large number of items

Advantage disappears for low number of
items.

Looking at the numbers for instructions shows a
cross over at low items.

Looking at Clock cycles – there is never an
advantage for Radix sort.

Looking at Cache misses shows where the
problem is coming from.

New versions of radix sort which allows for
cacheing and works faster

Sort based on comparing digits in the same significant
position of the number. Traced back to Hollerith’s work
on US census.

32 Advanced
CPUs

Optimisation

Technique Hit
time

Miss
Rate

Miss
penalty

Increase block size X

Increase cache size X

Higher associativity X

compiler optimisation X

Parallelism X X

prefetching (hardware and compiler) X X

Multilevel caches X

Write through cache X

Critical word first X

Merge write buffers X

Increase cache bandwidth X

Simple caches X

Way Prediction X

Avoid address translation X

Non blocking cache X

33 Summary

Optimisation

Piled higher and Deeper

Companies that make golf equipment make:
Shafts which hit the ball further;

Heads which hit the ball further;

Balls that fly further and straighter.

Better tees … really!
http://www.golfonline.co.uk/links-choice-10-booster-golf-tees-p-
3207.html

Technical improvements

If we believe that their affects are multiplicative
then we ask why Rory McIlroy only hits the ball
300m.

Actually (even if we believe they work) we realise
that they will not all work together.

Cache optimisations cannot be piled on top of
each other.

Some of them work well together – others less so.

Others are even antagonistic.

AMD and Intel do not follow the same strategies.

There have been some notable errors from each.

Optimisation is hard

34 PhD

Optimisation

