
Cache 
Optimisation

“sometime he thought that there must be a better way”



Cache Optimisation
1. Reduce miss rate

a) Increase block size

b) Increase cache size

c) Higher associativity

d) compiler optimisation

e) Parallelism

f) prefetching (hardware and compiler)

2. Reduce miss penalty: 

a) Multilevel caches

b) Write through cache

c) critical word first 

d) merging write buffers 

e) Parallelism

f) prefetching (hardware and compiler)

g) increase cache bandwidth (pipelined, multi-
banked, non blocking) caches

3. Reduce hit time: 

a) small simple caches

b) way prediction

c) trace caches

2 Optimisation
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Which c is responsible?

From Patterson

Compulsory : Small

Capacity : Major

Conflict:

Four-way associate, is the 
extra misses going from 8 
way to 4 way associate

3 Sources
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Increase block size

At a given cache size, increasing block size firstly 
reduces miss rate.

Compulsory misses drop because of spatial 
locality.

Reduce the number of blocks in a cache. Increase 
conflict misses and capacity misses.

Increases miss penalty (more data to transfer).

Penalty = latency + bandwidth.

The optimum is a balance.

4 Technique 1
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Technique 3

Larger caches

Longer miss penalty, longer hit time (address 
decode).
More complexity; power, expense.

Higher associatively

Reduces miss rate.

No point in going beyond 8 way

Heuristic: Direct mapped cache size N has the 
same miss rate as a two way associative cache of 
size N/2.

Greater hit time.

5 Technique 2
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Multilevel caches reduce miss penalty

Choice is larger cache – miss rate decrease

Faster cache – miss penalty decreases.

First level cache small enough to match clock 
cycle.

Second level cache faster than main memory

Performance analysis becomes far more 
complicated

<memory access time> = H1 + M1 * R1

This assumes that the miss penalty is the extra 
time for a cache miss – time to access for a miss 
is H1 + M1

M1 = H2 + M2 * R2

<t> = H1 + H2 * (1 – R2) + M2 * R2

We  immediately have 
a problem comparing 
different features

6 Technique 4
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Multilevel caches (i)

Local Miss Rate: The number of misses divided by 
the total number of accesses to the cache. RL1 & 
RL2

Global Miss Rate: The number of misses divided 
by the total number of accesses by the processor 
RL1 & RL1*RL2

Be careful about interpreting the local miss rate 
at level 2. If the programme fits into Level 1 
cache, the only accesses to the second level cache 
may be the compulsory ones. RL2 would then be 
100%.

Level 2 is best assessed via the global miss rate.

Better is <Average memory stalls/instruction>=S

S = RL1 * HL2 + RL2*ML2

Combining reads and 
write times into a 
global average
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Cache requirements

L1 cache needs to be accessible in one clock 
cycle. Complications & size need to be restricted 
so that the cycle time can be as fast as possible.

L1 affects the clock time.

L2 speed only affects the Miss penalty. It needs to 
be large (L1 is a subset of L2).

Having two caches breaks the connection to the 
clock rate and allows more flexibility.

Should Level 2 cache include all the contents of 
Level 1 cache? Multilevel inclusion.

Useful for cache
coherency

8 Cache 1 & 2
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Multilevel inclusion

Implies

L1 much bigger than L2 Þ local miss for L2 will 
be high.

If not in L1, then not likely to be in L2. L2 only  a 
little bigger than L1. If in L1 no reference to L2

L2 sees the compulsory misses and L1 picks up 
the repeat references.

Should the L1 block size be the same as the L2?

Architecturally it often looks as if L1 should be 
small blocks, L2 large ones.  So no …

For ease yes … 

If not L1 gets a cache miss

L2 gets  a cache miss

L2 fetches from memory and replaces

Several L1 blocks are now not valid

Increases L1 miss rate.

Potential to invalidate 
several L1 blocks

L1/L2 interactions 
may affect miss rates.

Pentium 
L1 64 bytes
L2 128 bytes
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Optimisation



Multilevel exclusion

Used especially where L2 is not that much bigger 
than L1.

L1 data is never found in L1 and vice versa.

If L1 data is never found at L2.

So  a cache miss in L1 and a hit in L2, causes a 
block in L1 to be exchanged with the required 
block at L2.

L2 will have far fewer hits than L1 

(If not miss rate at L1 must approach L2)

L1 should optimise hit time,

While L2 needs to minimise miss rate.

i7 has three levels of cache.

L1 32kB: L2 256kB: L3 8Mb

e.g. AMD Opteron

L1 and L2 should not 
be optimised in 
isolation

Local cache and global 
cache. Coherency

10 Cache 2
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Write through cache

Include a write buffer, so CPU does not have to 
wait for write to complete.

n) Store value in a memory location which 
corresponds to a block of a level 1 caches block.

Fill write buffer and proceed

n+1) Load value from a memory location which 
maps to the same cache block. Cache miss, fetch 
from level 2

n+2) Load memory location written at n), another 
cache miss (updated value). Miss at L1 and L2. 
Go to memory and load. Has the write buffer 
completed?

Solution: with a read miss either

wait for the write buffer to empty

or check the addresses in the write 
buffer.

11 Write 
through
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Avoid address translation during indexing of 
the cache to reduce hit time

The addresses of the programme on disk are 
virtual addresses. They must be translated to a 
physical address in order to be placed in memory.

Suppose instead of doing a translate to physical 
address and use the physical address to 
determine the cache position we use the virtual 
address!

That still leaves open which address we use for 
the tag.

Both address and tags and we have a 

virtual cache.

But with a virtual cache every context switch 
changes the virtual Û physical mapping.

So the cache must be flushed.

12 Technique 6
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Effect of purge on miss rate

Flushing the cache on context switching. 
reduces the effect of cache size.

Add PID to the tag

13 Purge
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Tag the cache with the Processor ID

Increase the width of the tag and include the PID 
of the process that wrote it.

No purge – check PID and if the same use. 
Otherwise signal a miss and read the correct 
block

Finally the OS (or the programme) may refer to 
the same physical location with two different 
virtual addresses. This can lead to inconsistencies

This can either be solved in hardware or software.

Finally I/O is usually done on physical addresses, 
so translation must be done there as well.

Here optimising the common case may cause 
significant complications and slow downs 
elsewhere.

14 PID tag
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Simplify the L1 cache

Time consuming part:

index portion of the address to read tag 
memory and compare it to address.

Smaller hardware faster … 

Simpler hardware faster …

Increase cache speed rather than size and hiding 
L1 misses with dynamic execution.

L1 optimise hit time

15 Technique 7
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Simplify the caches

Keep L2 small enough to fit on chip.

Direct map cache is the simplest,

overlap tag check with data transmission

Can keep tags on chip and data off chip

Slower L1 means slower clock cycle, which slows 
everything, not just memory accesses./

Off chip 
communication 
slower

Compromise
Example p295

16 Technique 7
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Way prediction: reduces hit time

Each block in cache has block predictor bits.

Which block to access on the next cache access.

Multiplexor set early for block selection. 

A single tag comparison performed in parallel 
with reading the cache data.

A miss and normal checking is done on the next 
cycle. 

Can get accuracy considerably above 50%.

Used in speculative processors which undo other 
actions.

See pipelining

17 Technique 8
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Pipeline cache access

Higher latency, but higher throughput.

Faster clock cycle, but greater penalty on wrong 
branch predictions.

Another example of optimising the common case.

18 Technique 9
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Non blocking cache

If the processor does not stall on a cache miss,

It can proceed 

if the cache can continue to supply data while 
reading from L2cache/memory

Non-blocking / lockup-free cache.

“hit under miss” reduces the effect of a miss.

Overlapping multiple misses is even better

CPUs that support 
out of order 
completion.

But the memory 
must be able to 
supply more than 1 
misses.

8kB  data cache
spec92

Integer programs
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Non blocking cache evaluation

Cache miss may or may not Þ processor stall

Calculating the miss penalty is difficult.

So we cannot (reliably) calculate the average 
memory access time.

Effect depends on:

a) miss penalty for multiple misses

b) Memory reference pattern

c) Processor performance with outstanding 
misses.

8kB  data cache
spec92

Integer programs

The more complex 
the CPU, the more 
the application 
becomes the 
benchmark

Non the less the 
gains are real, as are 
the complexities.

Reduces L1 miss 
penalties, but no 
effect on L2
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Multi-banked caches

Divide cache into multiple banks. Each one can 
be individually addressed.

Organise banks so multiple paths can be used.

One way is sequential interleaving.

If you want to access a block = 1 modulo 4, you 
want to be able to do it with a single access.

21 Technique11
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Start from a miss as soon as possible

A miss transfers a block or words

(penalty is latency + blocksize/bandwidth)

(normally) the processor needs just one word to 
restart.

So either transfer the word to register as soon as 
it arrives early restart and continue filling block 
while CPU resumes.

Or explicitly get the requested word first critical 
word first and again continue to fill.

Locality Þ other words in the block are likely to 
be needed as well – actually if the access are 
sequential in the block there may be little 
difference between the two methods  

More complex …
better?

Likely to be useful 
with large blocks

22 Technique12
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Merge write buffers

Write through cache and write back cache both 
use write buffers.

For a write buffer with space the data and 
physical address are written. CPU is finished and 
the buffer starts the writing process.

If the buffer is full the CPU has to wait.

On write, check if an address is already in a block 
waiting to be written (temporal locality). If there is 
merge. More updates done on a single write, less 
chance of the buffer filling. 

Compromise

Merging problematical with 
I/O buffers, because the I/O 
registers do not act like a 
block of memory.

Includes reducing miss 
penalties (no stall on buffer 
full). Does not fit into the 
taxonomy.
Not optimising the common 
case. Writes are rare. Although 
merging depends on common 
case. Writes are sequential.
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Compiler optimisation

In the early days programmers optimised memory 
accesses by hand.

Drum memory long latency

arrange words for sequential access so 
that the next word is under the read head when 
required.

The programmers built the machine.

Now the manufacturers will provide compilers to 
do analogous things.

Warning

Benchmarks are well established, stable, a sitting 
target. Manufacturers write compilers which 
return good performance for benchmark 
programs. (may even have special switches).

24 Technique14
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Compiler optimisation

Loop interchange

for (int j=0; j < 100;  j++) {

for (int i=0; i <5000; i++) {

x[i][j] = 2 * x[i][j] 

}

}

for (int i=0; i < 100;  i++) {

for (int j=0; j <5000; j++) {

x[i][j] = 2 * x[i][j] 

}

}

25 Technique14
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Compiler optimisation

Block alignment

for (pnt=0; pnt < 400;  pnt++) {

……..

……

}

If the compiler puts the beginning of the loop at 
the beginning of a cache block we are likely to 
load many of the instructions we need with a 
single load

Branch  straightening

if (     ) then {

} else

}

If the else block is normally taken, then reorder 
so code immediately follows if in memory.

Likely to be in same cache block

Code Block

Code Block

26 Technique14
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Compiler optimisation

Blocking

for (int row=0; row < N;  row++) {

for (int col=0; col < N; col++) {

for  (int pnt=0; pnt<N; pnt++) 

x[i][j] = x[i][j] + y[i][k]*z[k]j]

}}}

Neither row order nor column order will work 
here.

All three matrices should ideally be held in cache.

Want the row of y and the col of z as a minimum.

If the cache can hold submatrices of size B by B

Step through in those sizes.

Light: old accesses
Dark: recent accesses
White: not touched
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Compiler optimisation

for (int bCol=0; bCol<N;bCol = bCol = bCol+B) { 

for (int bPnt=0; bPnt<N;bPnt=bPnt+B) { 

for (int row=0; row < N;  row++) {

for (int col=bCol; col < min(bCol+B,N); col++) {

for  (int pnt=bPnt; pnt<min(bPnt+B,N); pnt++) 

x[i][j] = x[i][j] + y[i][k]*z[k]j]

}}}}}

y benefits from spatial locality and z from 
temporal.

Light: old accesses
Dark: recent accesses
White: not touched

These techniques go 
back to pre-cache 
days where people 
would hand code
inner loops to 
improve performance 
in critical areas.
Keeping variables in 
the registers
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Compiler controlled prefetching

Miss penalty or Miss rate.

Compiler analyses code. Identifies instructions 
and data which can be loaded before needed.

Inserts instructions into the code which causes 
these to be loaded ahead of time.

Register prefetch

Cache prefetch

Either can be faulting or non-faulting (non-binding)

Non-faulting turn into nops if they would cause 
an exception.

We want prefetches to operate silently. They must 
not interfere with the normal running of the 
processor. They should not change contents of 
registers and memory and cannot cause virtual 
memory faults.

Normal for modern 
machines

29 Technique15
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Compiler controlled prefetching

Overlap execution and fetch.

Loops are a good target.

Either:

loop unroll a couple of times

Or

loop unroll many times or software pipelining

Prefetch speedup for 
Pentium 4. The best 
results for specint2000 
(2/12) and specfp2000 
(9/14).

Miss penalty small

Miss penalty large

30 Technique15
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Out of order CPUs

Execution may be possible during cache miss.

Pending store stays in the register (or special 
register.

Instructions which require results of instructions 
affected by cache miss, wait to start execution.

Independent instructions continue.

Misses have an effect very difficult to estimate or 
even measure.

Depends on program, depends on compiler 
efficiency.

Depends on algorithm

31 Algorithm

Memory stall cycles = Misses   x (total miss latency – overlapped miss latency)

Instruction         Instruction
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Quick sort v Radix Sort

Algorithmically radix sort is better.

Visible for large number of items

Advantage disappears for low number of         
items. 

Looking at the numbers for instructions shows a 
cross over at low items.

Looking at Clock cycles – there is never an 
advantage for Radix sort.

Looking at Cache misses shows where the 
problem is coming from.

New versions of radix sort which allows for 
cacheing and works faster

Sort based on comparing digits in the same significant 
position of the number. Traced back to Hollerith’s work 
on US census. 

32 Advanced 
CPUs

Optimisation



Technique Hit
time

Miss
Rate

Miss 
penalty

Increase block size X

Increase cache size X

Higher associativity X

compiler optimisation X

Parallelism X X

prefetching (hardware and compiler) X X

Multilevel caches X

Write through cache X

Critical word first X

Merge write buffers X

Increase cache bandwidth X

Simple caches X

Way Prediction X

Avoid address translation X

Non blocking cache X
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Piled higher and Deeper

Companies that make golf equipment make:
Shafts which hit the ball further;

Heads which hit the ball further;

Balls that fly further and straighter.

Better tees … really!
http://www.golfonline.co.uk/links-choice-10-booster-golf-tees-p-
3207.html

Technical improvements

If we believe that their affects are multiplicative 
then we ask why Rory McIlroy only hits the ball 
300m.

Actually (even if we believe they work) we realise 
that they will not all work together.

Cache optimisations cannot be piled on top of 
each other.

Some of them work well together – others less so.

Others are even antagonistic.

AMD and Intel do not follow the same strategies.

There have been some notable errors from each.

Optimisation is hard

34 PhD
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