
Out of order
Execution

Instruction stages

We have assumed that all stages.

There is a problem with the EX stage
multiply (MUL) takes more time than ADD

We can clearly delay the execution of the ADD
until the MUL is finished.

This stalls the pipeline so is not desirable.

But suppose there is no dependence between
the two instructions.

A = B*C & D = E + F

Long EX

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

MUL

ADD

Out of order
Execution

Start as soon as possible

So start any instructions which are independent
of the long latency instruction.

If there are enough we can hide the latency

Seems to work if we have enough instructions.

Even if we don’t have enough instructions before
the next dependent instruction we may be able
to do some out of re-ordering.

Move the MUL earlier
Look beyond the next dependent instruction

Long EX

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Out of order
Execution

Exception handling

There is a problem with the MUL instruction (an
overflow for instance).

The exception doesn’t occur until the next two
instructions have completed.

We would like the machine to be in a consistent
state when the exception is handled:
•All previous instructions should be retired
•No later instruction should be retired

Or the instruction throws an exception
before MUL is complete

Exception

MUL

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Out of order
Execution

Retired

This means an instruction is committed, the
execution is finished – values are stored and the
architectural state of the machine is updated to
show the effect of that instruction.

Why

Von Neuman requires it

Enables (easy) recovery from exceptions

Enables (easy) restartable processes

Aids debugging.
[Makes it possible]

Debugging: becomes very hard because for
instance – if the statements following the MUL
cause a message to be printed out it looks as if
the programme should have completed the
instruction that is causing the problem.

IBM 360/195

Precise
exceptions

Out of order
Execution

Reorder buffer – ROB

Complete the instructions out of order –
but retire them (update the architectural
state of the machine in order.

Instructions are decoded and reserve an
entry in the Reorder Buffer

When an instruction completes it writes
the result into the ROB.

When an instruction is the oldest in the
ROB (means it has completed [without
throwing an exception]) make it
architecturally visible.

Architectural visible: moved to the register
file or memory.

ROB

Out of order
Execution

ROB Modification

Data in the Register File is part of the ISA.
Visible to Programmer: Architectural state.

Must have more functional units
Plus the ROB – which is not architecturally
visible

ROB

Register
File Functional

Unit

Register
File Functional

Unit

ROB

Functional
Unit

Out of order
Execution

ROB Entry

Must reserve the space before the op starts

If no space stall

Must contain information which allows it
to write the results to register

Must have the Destination register.
Must have value for Destination Register.

Must have PC (says which is the oldest
instruction)

But suppose a value which is written in
the ROB is wanted before it is
architecturally visible

Get it directly from the ROB

ROB Entry

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data
+ control bits Exc?

Out of order
Execution

ROB Modification

An extra data path from the ROB to the
functional units (and of course the
forwarding path from the output of the
Funtional Units to their inputs (By
passing)

The ROB is content addressable. Search by
register ID

ROB (i)

Register
File Functional

Unit

ROB

Functional
Unit

Out of order
Execution

ROB Simplification

A value for the functional unit is assumed
to be in the register.

Remember we are already using register
renaming. It means the physical location of
(say) register 2 depends on context.

Register 2 is part of the architectural state.
But when you ask for the value of register
2, or ask to store a value in register 2, the
physical location of register 2 varies.

So the register had a valid bit and if that is
set to false when you access a register then
what is in the register is the ROB entry
that contains (or will contain the value of
the register.

ROB (ii)

Out of order
Execution

Renaming

The register ID is renamed to the re-order
buffer entry that will hold the register’s
value.

Register ID -> ROB entry ID
Architectural register ID - > Physical
register ID

Now the ROB entry ID is the “register ID”

Now there appear to be a large number of
registers

Register renaming

Out of order
Execution

Operations

IF – fetch the instruction. In order.

D – Access the register file or the ROB.
Check if instruction can execute – are all
the values present (may be in the ROB – if
so not architectural
E – Instructions can complete out of orer

R – completion. Write result to ROB.

W – retirement/commit – if no exceptions
write to an architectural register file (or
memory). If exceptions flush pipeline. Start
exception handler

Dispatch/Execution – in order
Completion – out of order
Retirement – in order

Out of order
Execution

Register renaming

Simple principle and supports precise
exceptions

Need to access ROB to get results not yet
in register file – indirection means
increased latency and complexity

Elegant

But

We are increasing the complexity of
execution in order to take care of
something which is not likely to occur an
exception

Alternative: assume all is well and only
take action when something goes wrong.

History Buffer

Out of order
Execution

ROB review

A similar buffer but with a different
purpose

Only used for exceptions

On decode an entry is reserved in the
history buffer.
On completion the old value of the
destination is stored in the HB
When the instruction is the oldest the HB
location simply becomes accessible for the
system to write a value.

History Buffer

Register
File Functional

Unit

History
Buffer

Functional
Unit

Out of order
Execution

Dynamic Memory Scheduling

The order of execution is determined
dynamically (and not by the compiler)

The reorder buffer solves the problems of
instructions which take longer to complete
and via renaming solves the problem of
data dependencies, which are not true data
dependencies.

Includes delays not predictable at compile
time. Is and operand in cache?

But true data dependency stalls the
dispatch of instructions to the functional
unit –if you don’t have the values you can’t
execute the instructions

Review

Out of order
Execution

Out of Order
Operation of an in-order pipeline in the presence
of a data dependency:

False data dependency (register conflict)
allows the dispatch of younger instructions into
execution units – ROB

True data dependency
Stalls the dispatch younger instructions to
proceed

Problem of register v memory
MULL R1 <- R2, R3
ADD R4 <- R5, R1 True dependency stall

LD R1 <- R2(0)
ADD R4 <- R5, R1 True dependency stall

We know how long we have to wait for the multiply
to finish – but we don’t know how long the load
will take.

Is it from memory; Level 1 cache; Level 2 cache .. ?

Cannot tell ahead of time because of possibility of
dynamic memory allocation

Any following
commands cannot
dispatch

Out of order
Execution

Out of order Preventing dispatch stalls

Have talked about compiler re-ordering. Which will
work with MUL – fixed latency.

But LD has variable latency, so harder to do at
compile time.

Can also do fine-grained multi-threading – but
again difficult to in the presence of variable
latency.

Variable latency is where out of order execution
becomes valuable.

Only dispatch the instruction when the operands
become available.
Dispatch subsequent instructions

How do you know when the operands become
available?

Data flow architecture -
not Von Neuman – but exists on all

(nearly all?) current high performance computers.
Out of order
Execution

Out of order Move dependent instructions

Any instructions which are truly dependent are
moved to an area to wait : reservation stations

Monitor the source values of each instruction.
When all available dispatch instruction

No longer dispatch in control order, but now in
data flow order.

Variable latency is no longer a problem – we just
wait until all operands are available.
(If too long stall will of course occur)

Non dependent instructions can keep executing.

Out of order
Execution

Out of order Requirements for “Out of order execution”

1.Need to link the instruction which is waiting for a
value to the instruction which will produce it
No longer communicate through registers
1.Need to hold instructions out of the way of the
execution stream until they have all their operands
2.Instructions need to keep track on the status of
their source values
3.When all the source values are available the
instruction needs to be re-inserted into the
execution stream (sent to the functional unit)

Out of order
Execution

Out of order Actions implementing the requirements

1.Associate a tag with each data value
register renaming

This is the same as using the ROB – associate the
architectural register ID, with a ROB ID.

1.Reservation station. After renaming each
instruction is placed in the reservation station.
Moving out of the way

1.When the value of a data item is available
broadcast a tag.
The tag is a string which identifies the data value;
simplest is to use the reservation station ID.
Broadcast because more than one instruction may
need the value. Instructions in the reservation
station need to compare the tags, with the tag. on
their required values

1.When all source values are ready, dispatch
instruction(s) to appropriate functional units. If
more than one instruction need to arbitrate on
functional units.

Out of order
Execution

Out of order
Developed fo
Review of concepts

1.Register renaming means that only true
dependencies are left and also allows a
mechanism to link the results of calculations to
the operations which require those results

1.The Reservation stations allows the pipeline to
keep going bypassing dependent operations

1.The tag broadcast allows the creation of a data
flow like architecture. Note that every place in the
RS as well as every entry in the RAT needs a
comparator to check the tag bit. This means that
there is a significant increase in complexity

Out of order
Execution

Imprecise Imprecise Interrupts/Exceptions

Developed for 360/91.
Used in the 360/195

Computer stopped at this PC
Probably the problem is close to here.

Patterson comments
“Not so popular with programmers”
He can say that again!

Basically you do “imprecise debugging”

Taught me early that debugging – running to a
crash . Is a bad way to develop code

Final stage of parallelism

CPI must be at least one, unless more than one
instruction issued per clock cycle.
1.Superscalar processors

a.Static
b.Dynamic

2.VLIW – very long instruction Word

Reaching 4 instructions / clock
Out of order
Execution

