
Limits to
Speculation

2 Speculation Hardware based

Multiple instruction machines find branches an
impediment to creating ILP

Branch prediction: fetches and issues instructions
Speculation: fetches, issues and executes
instructions

Speculation involves
dynamic branch prediction, chooses

which instructions to execute
speculation actually executes instructions

before the branch is resolved
dynamic scheduling to deal with different

combinations of basic blocks

Principle – predicted flow of data values determines
when to execute instructions. Data flow execution.
Operations proceed as soon as their operands are
available.

Before we split execution into issue and execute.
Here we split execution into execute and commit.
We insist on in-order commit.

Speculation

3 Speculation Commit

Principle is instructions are issued and execute
and pass their results onto further instructions.

But not to make irreversible updates. Such as
raising an exception.

To hold these results, computed but not committed
a further set of buffers is required.

Re-order buffer ROB
Holds result between complete and commit.

ROB thus must provide operands to subsequent
instructions, until commit

Rob Entry
Instruction destination value ready

type field field field

branch register # value yes
Store memory loc until if
load or ALU commit complete

Speculation

4 Speculation Execution with Speculation

Issue
get an instruction from the instruction queue
Issue if there is space in the reservation station
(holds instructions between issue and execute) and
space in ROB (holds between execution and
commit). Update to show buffers in use.
A ROB entry is allocated for the result, this tags
the instruction - its value is sent to the reservation
station.
else stall

There must be somewhere to hold the output state
during the next clock cycle. Where ever data must
be stable during a cycle there must be a buffer.
Execute/commit break means we provide another
buffer.

Execute
Wait for any outstanding operands to become
available. Check for RAW hazards

Speculation

5 Speculation Execution with Speculation

Write result
Broadcast the result with the ROB tag and write to
ROB plus any reservation stations waiting on
result. Reservation station for this instruction is
released.
If the command is a store and available write to the
value field. Not available, then wait for broadcasted
value

Commit
ROB entry reaches head of the queue
Is the instruction a store, an incorrect branch,
other instruction.
If result is present in the buffer update the target
register with the result . For a store update the
memory. Incorrect branch, ROB flushed and
execution restarted at correct point.

ROB slot reclaimed
If the ROB fills execution issue stalls.

Reservation Station (beginning)
ROB (End)
Separate checks required.

Head of queue
implies time for in
order commit

Speculation

6 Speculation Alternative to ROB

Register renaming

End of execution copy result to buffer.
Hold in buffer until make permanent, then copy to
register.

Suppose bypass the buffer and copy straight to the
register.
Same thing as long as the register is untouched
until the commit stage is reached.
Better only one data copy.

But will rapidly run out of registers.
Increase the number of registers. 20-80
A register may be a temporary register or an
architecturally visible register.

WAW & WAR handled by renaming.
Speculation because physical register is not
architectural until commit.

When a physical register is mapped to an
architectural register the physical register
previously mapped is freed

Head of queue
implies time for in
order commit

Speculation

7 Speculation Register renaming

When to free a physical register?
When no longer needed.

When another instruction that writes to the same
architectural register commits.

Must be free or else the other register could not
have arrived at the head of the speculation queue.

May be earlier – when no functional unit
designates the physical register as a source and
has been superseded as architectural register.

Architectural register commit is later, but easier to
implement.

Speculation disadvantages
Additional on chip resources. Space and power
Recovery takes resources.
Erroneous speculation takes expensive resources
which are pointless – such as second level cache
misses.

Processors may stall speculative events when they
require expensive resources until not speculative.

Note difference in
allocation and write

Speculation

8 Performance Which is better speed or clever ILP (instruction
level parallelism
Speed comes from
1.Underlying material physics: Si, Ge
2.Material processing: feature size. Smaller size
faster processing
3.Power: higher power faster switching
4.Complexity: high complexity slower.

It depends !

Driving feature size were the foundaries, this was
fixed when SUN/HP/IBM/Dec …. Were competing.
Intel (AMD) still have to decide where to work

Power. Is it better to run two low powered
processors or one high powered. Performance
requirement / application specific

At given power and feature size, should we go for
simpler and faster architecture.
Or clever algorithms with much more hardware.
Still it depends – affects clock rate. CPI v GHz.
8 cores v. 10 cores
Release in March v September
Yield of 50% v 60%?

Note difference in
allocation and write

X-box v.
Playstation 3

Speculation

9 Performance (i) Limits : Ideal machine

What is a perfect ILP machine.

1.Register renaming – infinite virtual registers
2.=> all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no bad predictions

3. Jump prediction – all jumps perfectly predicted
(returns, case statements)

4. Memory-address alias analysis – addresses
known & a load can be moved before a store
provided addresses not equal

5. Perfect caches – 1 cycle latency

2&3 no control dependencies; perfect speculation &
an unbounded buffer of instructions available

1&4 only true data dependencies

5 depends on ILP to hide cache misses. Possible
but optimistic

A bit like a Carnot
engine in
thermodynamics

Speculation

10 Performance Ideal machine performance

Perfect machine is not infinitely fast.
Instr per clock Ideal ¥ actual 4
Instr Window size Ideal ¥ actual 200
Rename registers Ideal ¥ 48 int, 40 FP
Branch prediction Ideal 100% 94%-98%
Cache perfect Levels
Memory alias perfect ??

How do the different imperfections affect the
performance. How far are we from ideal

Numbers from
Hennessy on Spec
95

Average ~ 70

Programs

In
st

ru
ct

io
n

Is
su

es
 p

er
 c

yc
le

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Actual from ‘05.
Instr per clock is
4 issue, upto 6
initiates.

200 instructions in
flight!

Window size
Set of instructions
examined for
simultaneous
execution

Speculation

11 Performance Window size and maximum issue

Perfect machine

1.Looks arbitrarily far ahead to find instructions
with perfect branch prediction
2.Rename all registers to avoid WAR and WAW
3.Find data dependencies
4.Find memory dependencies
5.Have enough functional units

Each instruction in the window must be
permanently in the cpu. Hard.
Worse we must check every instruction every cycle.
Number of checks is window size ´ operations in
flight ´ operands per instruction.
For the example 6 ´ 200 ´ 2 = 2400.
Increasing window size has serious overheads.

Speculation

12 How much
possible

Best

Started by observing an average of 70 improvement
possible.

Running at less than 2% efficiency.

Saw a couple of places where improves of 3 may be
possible.

People are looking at various other ways of
improving things.

Speculating along multiple branches. It seems
likely that the system would run faster if we could
examine all possible branches. Branches must be
parallel, but of course the same variables may exist
in more than one branch, which causes problems.
The number of paths clearly grows exponentially,
limiting its use in complicated.

Real but unnecessary dependences. Loop counter
for instance.

Speculation

13 Conclusions How much better can we do?

Feature size still shrinking.
natural speed up
Moore’s Law still good

So more transistors means more functional units,
more parallel execution – more wasted effort

Faster – but green issues

Smaller units – ubiquitous computing

Latest AMD chip coming out this year. Duplication
of functional units looks very like the CDC6600.

Not exactly revolutionary.

Computers are faster – but designers are no
smarter!

Speculation

