
Chapter
Disk Access
Options

1 Storage Devices
Single core need performance from disks to keep the
pipeline full.

Multi-core need the performance to keep all the
pipelines full.

Single core has essentially one route to the ALU,
starting from the disk and ending at the register, but
the first part of the route from disk is slow.
Multi-path.

One possible solution is to create multiple routes off
the disk. Another is to use a fast disk (SSD) for the
programme and a slower larger disk for the data

Many cores mean we have a route ending in the core
for each core. If we duplicate the data we can
provide a completely different route for the data, but
we have to control data duplication.

Raid

“random” access for the
programme. Data is often read
sequentially so “pre-fetch” can be
used to mitigate stalls

Data duplication by hand is too
time consuming and unreliable.

2 Reliability and Speed

Providing alternate data paths in both instances
means providing more than one source for the data.

Raid for single processors and data duplication and
distribution for multi-core.

First look at how raid works.

Data duplication and distribution Hadoop
(not talking about use but about the
underlying technology)

Raid

3 Storage Devices Summary
Dependability is vital
Suitable measures

Latency – how long to the first bit arrives
Bandwidth/throughput – how fast does stuff

come through after the latency period
Obvious corollary – bandwidth for small block

is lower than large blocks. Manufacturers quote
favourable numbers (for as long as they can get away
with it).

Desktops performance dominated by response time
Servers by throughput.

Dependability
Fault is the failure of a component
Component failure does not necessary lead to system
failure.
System failure leads to service interruption.
Restoration is return to service accomplishment

Whirlwind was said to provide 35 hours a week with 90%
Which in 1951 was excellent

Multimedia processing
on the desktop may need
excellent throughput

Raid

4 Storage Devices Calculating dependability

Manufacturers quote mean time to failure. MTTF
depends on device

Service interruption mean time to repair MTTR
depends on your organisation

Mean time between failures MTBF = MTTF + MTTR
Availability = MTTF/(MTTF+MTTR)

Availability is something you can manage.
If MTTR = 0. Availability can be 100% even with a small
MMTF.
Rapid replacement may trump high dependability; and
be cheaper. Remember to include staff costs

Raid

5 Storage Devices Access

Sector: Sector ID. Data – fixed number of bytes eg 512
Error correcting code, synchronization field and gaps.

ECC on controller – system may never see errors.
Remapping sectors, forward error correction. Need to
monitor for errors to replace before failure.

Access:
Queuing delay if other accesses pending. On board
control may re-arrange accesses “elevator fashion”.
Again conflict between use “as fast as possible” & service
“as much as possible”
Seek – head movement; all heads together, hence
cylinders. Arrange data in cylinders for fast retrieval
Rotational latency
Data transfer
Controller overhead – (error correction)

Actual seek may be better than average – locality
Drives may include cache memory, which acts in a
similar way to CPU cache. Fetching more data than
required. Pre-fetching subsequent blocks.

Clever controllers make it
hard to predict what will
happen.
How does CPU pre-
fetching interact with the
disk

6 I/O IO commands

Devices managed by special purpose hardware
Transfers data
Synchronises with software

Command registers – control the device
Status registers – information including errors
Data registers – to transfer data to and from the device

Instructions can often only be accessed in kernel mode
Memory mapped I/O. Registers are in the same space as
memory.
Address decoder distinguishes between them.
Simplifies programming – hard work delegated to the OS

Device ready (or error) CPU interrupted. Must handle
Can priority order devices, so one device may interrupt
another.
High speed transfer using direct memory access DMA.
OS provides starting address and controller working
autonomously transfers data. Interrupt on completion.

Very useful for large
transfers

Raid

7 I/O performance Measure performance
Make sure you are measuring what you think you are:
Disk controllers may re-order requests and pre-fetch
results. The bus used has an influence.
The OS you are running. The application you are using.
DBMS tend to do clever things with disks – the results
for a database may not reflect a simpler app.

Response time and throughput are antagonistic.

Transaction Processing Council (TPC) develop
benchmarks to estimate database performance.
Small amounts of data transferred (DBMS queries).
Measure I/O rate, not data rate – may count overheads
as part of the payload and give a larger number than you
will see.
TPC benchmarks published and used by industry.
Hardware/Software suppliers may tune their systems to
score well in TPC (true of all benchmarks)
Also benchmarks for file systems, by stressing an NFS
server with a workload based on actual measurements.
Benchmarks for web servers.

Choose benchmarks
to match application.
Beware of tuning

Raid

8 Storage Fragments Why arrays?

Users need space to store data for their work.
Simplest is to provide them with a disk.
When they run out of space provide them with a larger
disk.
When they have filled the largest disk provide them with
a second disk.
Repeat ….

Drawbacks
what happens to the smaller disks.
How does the user keep track of how many

disks they have and where their data is.
How does the system manager keep track of

disks and make sure they are backed up.
Buy three users 1 TB disk and they may only

use 100Gbytes now and will not reach 300GBytes for six
or seven months. Buying too early and you are wasting
money.

Solution introduce a unified disk system.

Recycle to smaller users?

A serious management
problem

Raid

9 Disk Arrays Linux mount points
A linux system has a “root” at /
On this system a number of directories can hang
/home /usr /var /local

They can be directories on a disk,
but any directory can also be a mount for another disk.
So /home can be a completely separate disk.
/home/kyberd might be a directory on this “home” disk
while /home/ellis may be a mount point for a completely
separate disk.

This starts to create a single uniform directory space. It
is not completely transparent.
If I have 200Gb on /home/kyberd and I want an increase
to 500Gb
I can add a bigger disk and copy files across.
Make a mount point /home/kyberd/data

System mount points /mnt/disk1 … /mnt/disk2
Soft links from /home/kyberd/teaching -> disk1 etc.

Make a number of disks appear as a single disk with a
single size.

Management issue

Apparently have disk
space but unable to add
files in some directories

Linux allows a single
directory structure

Raid

10 RAID Redundant Arrays of Inexpensive Disks

Large disks were expensive smaller disks were cheap.
RAID was originally about cost.

Cheap disks are more likely to fail; more disks and
failure more likely.
Expensive disk with an annual failure rate of 0.1%.
Cheap disks with an annual failure rate of 0.2%. But if
any of the cheap disks fail the system fails and the joint
failure rate is nearly 1.2%.

Expensive disks have a higher areal density (large
capacity) and higher spin speed.

Lower latency and faster transfer.

BUT
If we do or three simultaneous reads, and if the reads
come off different disks, the cheap option might be
faster.

If we replace 1 disk with 0.1% failure with 2 with 0.2%
failure but make the two disks identical the failure rate
is 0.0004%. (Higher power requirements & more space).

Management issue

The disk controller can
choose to read off
different disks

Two low spec disks can
give better performance
than 1 high spec (for
certain applications).
May not be cheaper

11 RAID Levels Where do you want performance?

Interesting case study: performance is not just a
hardware issue. It is how the raw speed is utilised.

RAID 0 :Just a set of disks. No redundancy, no space
overheads. May be striped for faster access.

RAID 1: also called mirroring. 1 check disk for every
disk. Low space efficiency 50%. No calculation
overheads. May be optimised for disk reads, but this may
cause writes to take longer.

RAID 2: Based on error correcting memory. 1 check disk
per 2 data disks. Data split at the bit level. Not used,
because of heavy overheads and more use of onboard
error correction.

RAID 3: Bit interleaved parity. Each bit from a byte is
written to a separate disk. One extra disk for eight data
disks takes the parity bit for each byte. Can recover from
any single disk failure. Very little overhead for the check.
Good performance for read/writing large files. Not so
good for small /random I/O.

Mirroring precedes
RAID

Reads from either
disk, writes to both.

Recovery from
single disk failure.

Recovery from
single disk failure.

Raid

12 RAID Levels Where do you want performance?

RAID 4: Block-interleaved parity. An enhancement to
make RAID 3 better for small accesses. Again uses a
single parity disk (which can constitute a pinch point,
but it writes blocks on disks not bits (relying on onboard
checking. Means that disk reads are independent. Parity
disk can be a bottleneck. Disk writes take longer on
naïve RAID 4, because writing a block means reading the
corresponding block on the other three disks and
calculating the parity block and then writing that. 4
reads and 2 writes. Improvement. Read existing data and
existing parity. Calculate differences between old and
new and from that update the parity block. 2 reads and 2
writes.

Improvements complicate
electronics increase cost.

Recovery from single disk
failure.

RAID3.
RAID4.

13 RAID Levels Where do you want performance?

RAID 5: RAID4, but with the check block spread evenly
across all five disks. Removes parity disk bottleneck.
Benefits of both 3 and 4, but complicated controller.
Widely used

RAID 6 P+Q – two parity bits allow recovery from two
failures
RAID 01 v 10: With 2n disks, do you RAID0 n of them
and mirror on the other n RAID 01: “mirrored stripes”.
Mirror them in n pairs and stripe across the n. RAID 10:
“striped mirrors”

Recovery from single disk
failure.

If you are dominated by
large read/writes RAID3
may still be best

Recovery from single disk
failure.

Or RAID 0+1

RAID 1+0

Raid

14RAID Levels Multiple disk failures

Companies are introducing systems which allow
“hot replacement”.

Remove bad disk, insert new disk. Rebuild disk
for the information on other disks in the Raidset,
without the disk becoming unavailable.

Clearly this can reduce the MTTR to zero (if we
ignore dual failures). Dual failures are more
common than the square of the single failure
rate.

Correlated failure – manufacturing defect.
Environmental problems.

1 TB disks can take days to rebuild – possibility
of second failure. Especially since fails are not
always independent.

If reliability and performance are crucial. Need to
benchmark during a rebuild.

Large disks increase time
for raid rebuild

Because a single disk on
a Raidset may fail
silently, must have alert

Raid

14 RAID RAID for multi-core

Raid is a number of disks which act as a single
disk.

It doesn’t work if two or more cores which to
access a dataset on a single disk, if the cores
themselves are spatially separate.

We need a system where a data set is seen as a
single dataset, which is located on a number of
different disks. Where those disks may be
spatially separate. Hadoop is one such solution

The resulting multiple copies, this time at
separate locations mean that it may not be
necessary to have a separate backup for the
data.

Could choose one of a number of distributed
systems, but I will choose one you can easily
learn to use. Raid

The result is a
system which
provides better
performance and
greater data security

True of most
distributed file
systems

15 Hadoop Hadoop a framework with two elements

HDFS – Hadoop Distributed File System
Map-Reduce

Apache Pig, Apache Hive, Apache HBase,
Apache Phoenix, Apache Spark, Apache
ZooKeeper, Cloudera Impala, Apache
Flume, Apache Sqoop, Apache Oozie,
Apache Storm.

Hadoop is written in Java (with a little bit of C)

Supports:
C++, Java, Python, PHP, Ruby, Erlang, Perl,
Haskell, C#, Cocoa, Smalltalk, and Ocaml

Widely used:
Yahoo, Bing, Amazon, Adobe, IBM Cloud,
Facebook, LinkedIn, Twitter

hadoop

18 Hadoop History
• Apache Lucene (search engine) – Doug

Cutting

• Nutch – web crawler engine – 2002

• Google File System – GFS – 2003.
good for Nutch

• Nutch Distributed File System (NDFS)

• Google publish Map/Reduce paper 2004

• Map/Reduce working with NDFS (Cutting)

• Projects combined and call Hadoop
NDFS renamed HDFS

• Cutting moved to Yahoo

• Hadoop an Apache project

• Google move on to Caffiene and Percolator

Caffiene indexing
infrastructure

Percolator:
Incremental updates to
large datasets

hadoop

19

Owning, acquiring, analyzing and managing data have
suddenly moved from an operational task required by IT
to a top corporate priority where information is viewed as
a strategic asset. ….

The attraction of the low-cost, high-availability storage
and processing power of Hadoop has drawn many
organizations to give this new technology consideration

Key drivers for Hadoop adoption include low-cost data
storage coupled with a distributed processing environment
that’s ideal for experimentation with large, unstructured
data sets that have not been accessed by organizations in
the past.

Not suitable for real time processing – NoSQL is a
solution for this.
Use growing fastest for unstructured data, where
there is no existing mature competitor

HDFS

Hadoop

20

Hadoop File System

A purpose built distributed file system.
To the client looks like a normal file system.

Since it looks like a normal file system it is easy to
use.
But it actual structure allows it to provide a
substrate for distributed processing.

How to distribute data?

We could create replicas of the whole file and
distribute them around a number of data centres

BUT
It would consume a lot of bandwidth to copy all
the data and it would take up a lot of space at the
data centres.

So Hadoop divides the data up into “blocks”
The blocks are replicated and each block instance
is stored in a number of different places.
A job analyses data from a “near by” storage unit

HDFS

Hadoop

Some
modern tanks
have a
control
system based
on
Playstation
handset.

21 Hadoop Aims Read large data sets rapidly (even at the
expense of slow read)

To read
• Locate block
• Read block

Transfer time = seek time +
(data size/transfer speed)

Typical seek times are 5ms and a fast
transfer is 100 MB/sec

Disk block sizes are typical ½ to 4 Kb

1GByte file will take 10s to read the data.

It will require 250,000 seeks for a badly
fragmented file. About 20 minutes

hadoop

22 Hadoop
Architecture

Hadoop default block size is 64Mb

So 16 seeks/Gbyte – about 80ms

(Normal text and programme files are a
few kb – with such a large block the waste
of space would be enormous)

Can choose larger block size.

HDFS stores blocks – normal filesystems
store files.

Blocks are simple buckets of data. The
metadata to tie them into files is stored
elsewhere.

HDFS automatically replicates data onto
different disks – typically 3 servers
no requirement for RAID

Hardware raid is
expensive and is
often the first thing
to break

hadoop

23 Hadoop
Architecture

HDFS does not require expensive reliable
hardware.

HDFS uses a master/slave architecture

Namenode – single master: manages
filesystem space and metadata
Datanodes – many slaves where all the
blocks for a given tree are located

Namenode and datanode are programmes
that typically run one per machine

Each server in a rack has its own
datanode and one runs the namenode

hadoop

24 Hadoop
Architecture

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

hadoop

25 Hadoop
Architecture

Each server in a rack has its own
Datanode and one runs the Namenode

Client interacts with the Namenode to get
references to the data block.

Data is fetched via references to the
appropriate Datanodes.

So the load on the Namenode is limited
and since the number of Datanodes scales
with the amount of data, the response
time scales well

hadoop

26 Redundancy

The Namenode contains

• the filesystem tree
• metadata for all files and directories
• Reference to the Datanodes to which all

the blocks for a given file are stored

Namenodes use two files
• An image of the system
• A transaction (edit) log

On power up the Namenode accesses the
Datanodes and rebuilds the
block/Datanode map.
It has a filesystem and builds the mapping
from the files to the physical locations of
the blocks which constitute the file

Datanodes send a heartbeat and a block
report (blocks for each file) to the
Namenode

hadoop

27 Failures

Namenode is a single point of failure.

Protect that point of failure

Hadoop provides a means to make a
backup of the Namenode files, which
constitute a snap-shot state of the system.
This is done synchronously to multiple
local and remote disks.

A secondary Namenode can be created. Its
role is to merge the edit log with the
namespace image to prevent the edit log
from becoming too large. It also maintains
a copy of the merged state. Note: It does
not do the same job as a regular
Namenode!

Possiblity of some data loss if a Namenode
goes down

Put all your eggs in
one basket and
watch that like a
hawk

hadoop

28 Failures

Namenode is a single point of failure.

Client Namenode Secondary
Namenode

Datanode
1

Datanode
4

Datanode
3

Datanode
2

Datanode
5

Data
replication

hadoop

29 Data
Duplication

“The placement of replicas is crucial to
HDFS reliability and performance”

haddop.apache.org

Number of replicas may be specified at
creation, and may be subsequently
modified.

The default is three replicas.

Uses rack aware placement … in a cluster
there is normally higher bandwidth
between elements in the same rack, then
between racks.

HDFS compromise, one replica in the
same rack, one in a different one.

hadoop

30 Rack aware

HDFS compromise, one replica in the
same rack, one in a different one.

Putting one duplicate in the same rack
reduces inter rack traffic, while not
significantly reducing the reliability of the
system.

This is referred to as rack awareness and
is transparent to the user.

hadoop tries to satisfy a request with the
replica which is “closest”

If you are interested
check out hadoop
web site

closest = highest
available bandwidth

hadoop

31 Use

HDFS Not quite like using a standard
filesystem

uses the FS shell

hadoop fs -mkdir

hadoop fs –ls

Hadoop is not limited to HDFS

Written in java with cross language
support

hadoop

32 Thrift

Apache provides a software framework
which generates interface code to allow
cross-language communication

The Apache Thrift software framework, for
scalable cross-language services
development, combines a software stack
with a code generation engine to build
services that work efficiently and
seamlessly between C++, Java, Python,
PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa,
JavaScript, Node.js, Smalltalk, OCaml and
Delphi and other languages.

http://thrift.apache.org

hadoop

33 Accessing HDFS

Supports URI name space and file names
Uniform Resource Identifier

Looks like a web address

hdfs:://nnAddress:nnPort/path

Designed for very large data sets and in
particular requirements to stream it and
process it is parallel.

In particular it was built for the
Map/Reduce paradigm.

Identical code on distributed machines, is
sent chunks of data to work on.

No map process can or needs to see all the
data, all they want is a well defined chunk,
such as a hadoop data block.

Designed with database searches in mind.

hadoop

34 Accessing HDFS

Designed with database searches in mind.

It clearly assumes that there will be only
one or two processes accessing a particular
chunk at any time.

And that the cores are all in the same rack
or the same computer room.

If the data is, for instance, spread over
more than one centre (or even country),
then one might choose to write both
duplicates at a distance site, where they
can be accessed by different collections of
machines.

Or if there are likely to be multiple
simultaneous accesses to a block, again
spreading them more widely might be
useful

hadoop

35 MAP/Reduce Designed with database searches in mind.

But can be used in more general
programming situations.

If you are running the same code on many
data segments.

In particle physics we need to analyse
collisions between sub-atomic particles.

Each collision is separate. Each one needs
to be processed by the same code to
extract some interesting information.

At the end the information is summed to
get a result.

There may be millions of collisions to
analyse and a data set which is 100s of
Gigabytes.

hadoop

36 MAP/Reduce Split the data up to reside on a number of
servers which are connected to a number
of processing units.

The Map phase consists of many copies of
the same code running to produce the
“answer”.

Those ”answers” are all transferred to the
“Reduce” part of the programme, which
combines the results from all the Maps, to
provide a final answer.

hadoop

37 Hadoop Review Hadoop large block size - default 64Mb

Block oriented (independent)

Automatic replication

Master (Namenode) – slave (Datanode)
architecture.

Client contacts Namenode only for the
location of the block.
Data transfer between the Datanode and
the client.

Good redundancy

Good for parallel processing

Scales well

hadoop

