
1

Chapter

Virtual Memory

Memory

Baby had an instruction set where the programmer
wrote absolute addresses.
If you wanted to add a line all the subsequent lines
would have the wrong number.
Any jump backs – say for loops would also need
modification.
Wrote the code – created the opcodes and keyed
them in.
Corrections were time consuming.

Any subroutine was also a problem. How do you
write a subroutine which can be linked in with an
arbitrary programme?

Assembler to automate recalculating the offsets
etc.
Relative addressing.
Start at 0, all commands at an offset.
On loading merely add start address to all offsets

Subroutine
Program

2 Introduction

Virtual Mem

Relocatable

Such code is called re-locatable.
Makes code development much easier (possible?)

Can think of it as a virtual address space for the
subroutine 0-1738 which is mapped onto real
memory from 3268-5318
code is called re-locatable.

Memory Limit
Early machines had a small address space.
An even smaller amount of memory.
You wrote your programs to fit in the available
physical memory.
If it wouldn’t fit you simplified the programme.
Found clever ways of saving an instruction.
But the limit was a real hard limit.

That is not how it
would have been
described.

3 Relocation

Virtual Mem

Address mapping

People tried to write self modifying code, but it was
never more than a (very small) minority.
The real solution to create overlays.

The programmer must identify when different
sections of code are required and arrange for the
sections to be loaded at the appropriate time.

The programme is split into
sections. The sections must
(clearly) contain code which is
temporally separate.

Program

Program

Program

Program

That is not how
it would have
been described.

4 Overlays

Virtual Mem

Larger than physical memory
It was not seen as a single virtual address space
which was mapped into a smaller physical space.
There were a number of constraints:
a)Variables required outside the overlay had to be
defined elsewhere, in a permanently resident
section
b)With multiple overlays you need to make sure
that all overlays are resident at the appropriate
times. (Including the call into the section)
c)You needed a root section which was always
present.
d)The values in the overlay would not be present if
it was overwritten and reloaded.
e)You needed to be careful about the state of
registers.

Experience did not translate between different
machines.

Program

Program

Program

Program

Program

5 Overlays

Virtual Mem

Example

Real time system to control an experiment.
0.0-0.7s beam of particles interact to create events.

State of detectors need to be monitored.
0.7-2.3s gap between beam. Study of output from

the detectors during the last burst.
repeat for 2 hours.
10 minute gap
repeat for three weeks

A slight advantage in that there is an external
signal which indicates the start and end of beam.

Hard to write, hard to test and verify correct
operation.
It would hang approximately once every 24 hours.

Simple in that temporal localisation was enforced
by environment.

Permanent
Section

ProgramProgram

Taking data.

ensuring data
quality

6 Overlays

Virtual Mem

Operating System Overlays

In the mid 70’s overlaying moved into the operating
system. Improved reliability and programmer
productivity.

Commonplace for programmers to use big data
sets.
Rather than multiple passes and clever algorithms,
read all the data into “memory” and let the OS sort
it out.
Allowed more than one process to be apparently

Permanent
Section

ProgramProgram

running at the same
time.
The “overlays” became
dynamic and
“relocatable”, they could
be swapped back into
physical memory in
different locations

7 Virtual Mem

Virtual Mem

Virtual memory terminology

Virtual memory shares many concepts with cache,
but different terms.
The unit which is swapped in and out of memory is
called a page or block
A cache miss becomes a page fault or (address
fault)
The processor produces virtual addresses
translated to physical addresses in memory
Memory mapping or address translation
Special place on disk – the page file
Excessive faulting leads to repeated replacement of
the pages in memory disk thrashing
May lead to very little work being undertaken.

Cache replacement is implemented in hardware
Virtual memory strategies are OS determined.
Miss penalty is higher so the algorithm can be
more complex.

8 Virtual Mem

VM v. cache

Parameter 1st Level
cache

Virtual Memory

Unit size 16-128 bytes Up to 8TB

Hit Time 1-3 cycles 100-200 cycles

Miss penalty 8-200 cycles 1-10 million
cycles

Access time 6-60 cycles 0.8-8M cycles

Transfer time 2-40 cycles 0.2-2M cycles

Miss Rate 0.1-10% 10-6-10-3%

Miss Time 0.1%-22% 0.5%-50%

Mapping 25-45 physical
to 14-20 cache

32-64 bit virtual-
25-45 physical

Processor address space determines the size of
virtual memory – hence importance of 64 bit.
VM can be fixed size pages or variable size
segments. Pages lead to inefficient memory usage
as the pages may contain many empty cells.
Modern machines base their system on pages
although the may allow multi-page transfer, which
are also called segments.

9 Virtual Mem

Virtual Mem

VM v. cache

Page Segment

Words per address 1 2

Programmer visible Invisible Possibly visible

Replace a block Trivial Computationally hard

Memory efficiency Internal gaps Gaps between segments
too small to fill

Disk traffic Yes. Choice of
page size

No -small segments are
inefficient. Access time >

transfer time

High page fault penalty, so optimise for low page
faulting.

10 Segment v Page

Virtual Mem

14

13

15

16 In
use

Main
memory

(a) Before (b) After

Figure 8.15 Allocation of Free Frames

Process A

Free frame list
13
14
15
18
20

Free frame list
20

Process A
page table

18
13
14
15

Page 0
Page 1
Page 2
Page 3

In
use

In
use

17

18

19

20

14

13

15

16 In
use

In
use

Main
memory

Page 0
of A

Page 3
of A

Page 2
of A

Page 1
of A

In
use

17

18

19

20

Process A
Page 0
Page 1
Page 2
Page 3

11 details

The memory divided into frames (or page frames)
The compiled programmes are divided into pages

They are of course the same size.

A problem is now apparent.

Compile code contains memory locations:
location of data words, targets of jumps and
subroutine calls.

Virtual Mem

Dynamic version of
the relocatable
loader

12Addresses
The programme with addresses starting at some
arbitrary location. This is the logical address of
the instruction or data word.

When a page is copied into a frame, the locations
are all at a physical address in memory.

Need to translate from logical to physical.
Add the base address of the physical location to
the logical location.

Like the overlay when we bring a page in from
disk it may go into a new place.

Modern OS use demand paging
A page is in only bought in off disk when it is
required.
Access to a page not in memory generates a page
fault (cf cache miss)
It will overwrite a page already in memory page
replacement for which we need an algorithm
analogous to cache replacement.

Virtual Mem

13 Translation*

CPU MemoryAddress
Translation

Physical address of memory

Data

All programs share the same physical address space
Machine Language programs must be aware of machine
organisation. (compilers for HLL)
Program can access any machine resource.

Programs run in a standard virtual address space.
Address translation managed by hardware which maps
virtual address to physical.
Address translation supports:

multi-threaded programming.
Stacks may be allowed to grow in disjoint physical memory,
but in contiguous virtual memory
Protection
protection of sensitive areas of memory
protection of threads from each other
Kernel data protected from user programs security
Sharing
Sharing of memory between processes (threads)
Speedy interchange between programs

Memory acts as a cache for disk

Security is
difficult to
enforce

Virtual Mem

The size of the
logical address
space may be
larger than the
physical memory
Virtual memory

Address
translation adds
complexity, but
with numerous
benefits

14 Translation

Both real and virtual memory is addressed in
pages.
Processor generates virtual addresses, memory
addressed are translated into physical address –
which may be in memory or on disk

Address in page same physical and
virtual. In this case 212

Size of virtual memory is not the same
as physical.

VAX 11/780 had typically 1-4Mbyte of
physical memory, but 4.3Gbyte
virtual. Reading a large amount of
data into “memory” (say a large array)
and then process it without data read.

Virtual Mem

15 Page Table* Finding the page

Page fault is very expensive, transferring data
from disk is thousands of times slower than even
from main memory – fractions of a percent
reductions in rate are worthwhile.

Complex algorithms can be used to track page
usage.

we don’t want conflict misses
so Fully associative placement.

But search to find which frame has the required
page is too time consuming

4Gbytes memory – which is not large
4Kbyte pages – which is standard

1 million comparisons – even 1 comparison per
clock operation gives ¼ millisecond for a location
which is in memory

16 Page Table* Finding the page

Array which indexes the memory – kept in memory
Page Table translates virtual address to physical

Each program has own page table

Special hardware register

Page table register points to
page table in physical memory

Page table contains an entry
for every page.
Tag bit to say if it is in
memory

17 Using Table Using the table

Valid bit = 0. generates a page fault Þ OS
OS has virtual address – needs to get it from an
address on disk.

Could get page from source file – update values?
Creates an area Swap Space.

Needs a map from virtual memory to disk address.
Logically another table – indexed as the page table
May be the same (as shown).

When Physical memory is full replacement algorithm to
decide on page to replace

Example where
the page table
points to disk
and memory

18 Replacement Replacing pages

LRU is the algorithm of choice.
Full LRU means structure update on each access

Approximate LRU: reference or use bit set on access.
But cleared periodically. Page with bit=0 can be
replaced.

Writes

Write through is impractical – as is write buffer.
For disks access time > transfer time.

Copy pages not items (spatial locality).
Update page in memory – set dirty bit

If page is replaced then only write out before replacing.

If possible choose a page without the dirty bit set.

Virtual Mem

19 Page Table Problems with the page table

32 virtual address – 4KByte pages Þ 220 entries
4bytes per entry
4 Mbyte – page table.
1 page table per process

Currently my machine has 77 processes. – 300 Mbytes
1 Gbyte – memory 30% on the page table.

Solution

Page the page tables.

Tables sit in the OS virtual space (not process)

A page in memory must have its part of the page table
in memory.

Virtual Mem

There are parts of memory which are non-paged.
Data in these areas cannot be swapped out or
overwritten.

Some OS pages are in non-paged memory – don’t
want to have to wait for some parts of the OS

20 Translation Flow diagram for address translation

Virtual Mem

Start

CPU checks the TLB

Page table
entry in
TLB?

Access Page Table

Update TLB

Yes

Yes

Yes

No

No

No

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Figure 8.18 Operation of Paging and Translation Lookaside Buffer (TLB) [FURH87]

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

This is very good, but it has caused a problem.

When a physical address is required, it needs one
memory access to get the instruction/data.

With a virtual address you need to access the page
table to get the physical address and then access the
physical address.
The memory access time has just doubled.
To get round this problem a special cache is provided
which holds part of the page table.

Translation lookaside buffer TLB

21 Translation Replacing pages

Address translation is likely to be used again very
shortly; both temporal locality and spatial locality.

Keep recently used translations in a special cache
Translation-lookaside buffer
dirty bit, valid bit must be available here.

Miss on the TLB

Translation not
in the buffer

22 Operation Flow diagram for address translation

Virtual Mem

Start

CPU checks the TLB

Page table
entry in
TLB?

Access Page Table

Update TLB

Yes

Yes

Yes

No

No

No

CPU generates
physical address

OS instructs CPU
to read the page

from disk

CPU activates
I/O hardware

Page fault
handling routine

Return to
faulted instruction

Page tables
updated

Figure 8.18 Operation of Paging and Translation Lookaside Buffer (TLB) [FURH87]

Perform page
replacement

Page transferred
from disk to

main memory

Page
in main

memory?

Memory
full?

A diagram of what happens when the cpu wants to
translate a logical address into a physical address.

First check the TLB.

Then need to access the page pointed to by the TLB.

23 TLB TLB Miss

TLB Hit – pass address and set dirty bit for write
TLB miss:

page in memory but not in TLB. Load address
into TLB, copy dirty bit back to the page table for the
replaced page into and restart

page nor in memory. Throw an exception,
handle in software or hardware.

Typical values
TLB size 16-512 entries
Block size 1-2 page table entries
Hit time 0.5-1 clock cycles
Miss penalty 10-100 cycles
Miss rate 0.01-1%

Storage and replacement strategy has to be defined for
the TLB.

Virtual Mem

24 Page Table Problems with the page table

32 virtual address – 4KByte pages Þ 220 entries
4bytes per entry
4 Mbyte – page table.
1 page table per process

Currently my machine has 77 processes. – 300 Mbytes
1 Gbyte – memory 30% on the page table.

Solutions
Limit register restricts the size of the table. Grow page
table as required. Addresses can only grow in one
direction.

Systems want to grow from high memory down and low
memory up. So two pages tables and two registers. If
memory is filled sparsely page table will grow large.

Make the page table the size of memory – placing the
virtual address via a hashing function. Inverted page
table.

Multi-Level pages tables
1 level is at segment (multi-page level) pointing to page
table if segment is used. Useful for sparse allocation
(matrix problems) – decode more complex.

Many techniques
have other
implications

Virtual Mem

Memory hierachy Revies

100s Bytes
300 – 500 ps (0.3-0.5 ns)

10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

G Bytes
80ns- 200ns
~ $100/ GByte

10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Files

Staged by
transfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Gbytes+

Upper Level

Lower Level

faster

cache cntl
64-128 bytes

Larger

Disk

Memory

Pages

L2 Cache

Blocks

L1 Cache

Blocks

Registers

Words

Size
Access time
cost

25

The ideas are similar at every level. The solutions
depend on the details at that level

L3 Cache

26 Review* Review

Placing a block : associativity: Direct; n-way; full
Finding a block

Replacing a block: LRU - random
Writing to a block: write through: simpler needs buffer

write back

Misses: Compulsory; increase block size
Capacity misses; increase size –
Conflict miss: increase assoc -
(collision)

Miss amelioration
requested word first
hit under miss and miss under miss
prefetch

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set associative Set index, then search entries within the set n

Fully associative Search all entries #entries

Full lookup table 0

Increase miss penalty
Increase access time
Increase access time

Large memories are
slow:technology and size
Cache: apparently large
fast memory
Depends on locality

