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Abstract 

This paper analyses monthly data on sea ice cover extent from January 1979 to April 2024 

and on snow cover extent from January 1967 to April 2024 for various regions of the 

world using fractional integration methods. A statistically significant time trend is found 

when the errors in the regression model are incorrectly assumed to exhibit short memory. 

However, this evidence vanishes when the errors are allowed instead to follow an I(d) 

process with d different from zero and thus to be characterised by long memory (a well-

known property of most climatological series) – in this case, the time trend becomes 

insignificant for all series. This implies that previous findings suggesting an irreversible 

decline in both sea ice and snow cover extent might be misleading because of an incorrect 

model specification. 

 

Keywords: sea ice and snow cover extent, trends, fractional integration, long memory 

JEL classification: C22, Q54 

 

Corresponding author: Professor Guglielmo Maria Caporale, Department of 

Economics and Finance, Brunel University London, Uxbridge, UB8 3PH, UK. Email: 

Guglielmo-Maria.Caporale@brunel.ac.uk; https://orcid.org/0000-0002-0144-4135 
 

 

* The second and third authors gratefully acknowledge financial support from an Internal Project of the 

Universidad Francisco de Vitoria. Luis A. Gil-Alana also acknowledges support from the MINEIC-AEI-

FEDER PID2020-113691RB-I00 project from ‘Ministerio de Economía, Industria y Competitividad’ 

(MINEIC), `Agencia Estatal de Investigación' (AEI) Spain and `Fondo Europeo de Desarrollo Regional' 

(FEDER).   



 

2 
 

1.  Introduction 

Sea ice and snow cover extent both play a key role in the global climate system.  The 

former is the area of ice that covers the Arctic Ocean and the Southern Ocean respectively 

at any given time. Its extent is crucial since sea ice reflects sunlight back into space as 

well as regulating ocean and air temperature, circulating ocean water, and preserving 

animal habitats. Snow instead is of essential importance for the water cycle. In particular, 

winter precipitation and spring and summer runoff both affect the water supply, energy 

production, and local climate. In addition, snow is the cause of geological hazards such 

as floods and avalanches. For these reasons, its cover extent is also considered a key 

climatological variable. 

In recent decades there has been a growing concern that global warming is leading 

to an irreversible and sharp decline in both sea ice and snow cover extent, with severe 

damaging consequences for the planet Earth (see, e.g., Frei et al., 2012; Groisman et al., 

1994a,b; Li et al., 2018). Existing studies invariable conclude that indeed those two series 

exhibit a negative and significant time trend (see, e.g., Déry and Brown, 2007; Young, 

2023; Peng and Meier, 2018; Mudryk et al 2020a,b, 2021). This evidence is based on 

standard modelling approaches which require the disturbances to be well behaved, 

namely not to be autocorrelated. However, it is well known that climatological series tend 

to exhibit long memory - see, e.g., the recent studies by Yuan et al. (2022), Zhu et al. 

(2023), and Gil-Alana and Carmona (2023). For this reason, the present paper adopts a 

modelling framework which allows the series of interest to be characterised by this 

property. More specifically, it analyses monthly data on sea ice cover extent from January 

1979 to April 2024 and on snow cover extent from January 1967 to April 2024 for various 

regions of the world using a fractional integration framework based on the assumption 

that the errors are I(d) with d different from zero. This leads to the conclusion that the 
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series being investigated are not in fact trended, in contrast to the evidence of a 

progressive decline in both sea ice and snow cover extent which is obtained using 

standard methods. The implication is that the findings reported by previous studies are a 

consequence of their adopting an inappropriate modelling approach not recognising that 

the series under examination in fact exhibit long-range dependence.  

The paper is structured as follows: Section 2 provides a brief review of the existing 

literature relying on standard methods; Section 3 outlines the fractional integration model 

used in the current study; Section 4 describes the data and presents the empirical findings; 

Section 5 offers some concluding remarks. 

 

2. Literature Review 

Snow and sea ice cover play a crucial role in the global climate system (Chahine, 1992; 

Mudryk et al., 2020a), as changes in them can affect directly the Earth’s surface albedo 

(which is defined as the fraction of incoming sunlight that is reflected back to the 

atmosphere) and hence surface energy (Frei et al., 2012; Groisman et al., 1994a,b; Li et 

al., 2018). Specifically, the sea-ice cover acts as a thermodynamic and mechanical 

insulator that dampens oceanic heat loss and wind-driven mechanical mixing (Sturm and 

Massom, 2009). Similarly, owing to its low heat conductivity, snow also effectively 

insulates the underlying soil, with significant effects on deep soil temperatures and 

permafrost extent (Zhang, 2005; Lawrence and Slater, 2010; Gouttevin et al., 2012). Also, 

snow cover melting has positive effects on available fresh water, vegetation, 

biogeochemical activity, and terrestrial and aquatic ecosystems (Callaghan et al., 2011; 

Marti et al., 2017). Therefore, changes in the snow and sea ice cover extent can modify 

the physical and biological processes that affect the climate system, both directly and 

indirectly (Callaghan et al., 2011; Mudryk et al 2020a,b, 2021).  
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The average maximum winter global sea ice extent which has been observed from 1966 

to the present is approximately 19×106 km2 (NOAA, 2024), while the average maximum 

winter snow extent in the Northern Hemisphere1 is approximately 47×106 km2 (Estilow 

et al., 2015; NOAA, 2024. Several studies have analysed the relationship between snow 

and sea ice cover extent on one side and Earth’s albedo and surface energy on the other, 

and shown that when the former declines the Earth’s albedo decreases and the Earth’s 

surface warms as a result of more energy being absorbed (Kukla and Kukla, 1974; 

Groisman et al., 1994b).  

A decline in the snow and the sea ice cover extent has been observed in many 

parts of the world (Brown et al., 2010; Najafi et al., 2016). In particular, it appears that 

the depletion of the Arctic sea ice cover, especially in the summer, has accelerated since 

satellite-based measurements became available in the late 1970s (Parkinson et al., 1999). 

Such measurements have helped the scientific community to monitor the evolution over 

time of both the snow and the sea ice cover extent. Multiple types of sensors from a wide 

range of missions have been used to obtain time series for both spanning long time 

periods, and considerable effort has been made to measure temporal and regional 

variability of the sea ice cover extent in the Arctic (Peng and Meier, 2017). Since the late 

1970s, satellite measurements have recorded a decrease of 10–15% per decade in the 

Arctic annual minimum sea ice cover extent (Comiso and Nishio, 2008; Cavalieri and 

Parkinson, 2012). According to Peng et al (2017), Arctic ice has been declining at a faster 

rate from 1997 to 2016, compared with the average decline over the previous 20 years 

(1978–97). On the other hand, climate projections indicate that in the future the snow 

cover extent will continue to decrease at the same rate of about 0.8 × 106 km2 per decade 

observed in the Northern Hemisphere (NH) since 1970 (Brown and Robinson, 2011), thus 

                                                           
1 No snow extent data are available for the Southern Hemisphere from NOAA (2024). 
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contributing to warmer temperatures (Brown et al., 2010). However, there has been 

considerable intra-seasonal variability (Wang et al., 2015; Connolly et al., 2019; Mudryk 

et al., 2020b; Khani et al., 2022). Interestingly, anomalously cold periods and large 

snowfalls in recent winters have been experienced in North America, Asia, and Europe 

(Kug et al., 2015), leading to increasing snow cover extent for some areas (Dahe et al., 

2006; Roessler and Dietz, 2022; Young, 2023).  

Climate models are periodically updated and reported by the Integovernmental 

Panel on Climate Change (IPCC) (IPCC, 2023). Mudryk et al. (2020) provided a more 

accurate analysis of Northern Hemisphere snow cover extent using the CMIP6 (World 

Climate Research Programme Coupled Model Intercomparison Project Phase 6) multi-

model ensemble rather than CMIP5. Several studies have also been carried out to develop 

statistical models aimed at explaining the impact of climate changes on Arctic sea ice 

extent (Drobot, 2003; Drobot et al., 2006; Lindsay et al., 2008). However, there are only 

a few papers on forecasting ice sea and snow cover extent (e.g., Smith et al., 2016; Castle 

and Hendry, 2020; Essery et al., 2020; Blazsek et al., 2024).  

  All the above studies use standard regression models based on the assumption that 

the disturbances are well behaved, i.e. that they do not exhibit long-range dependence. In 

fact, as our analysis below will show, this is an incorrect assumption to make, and once 

allowance is made for the possibility of long memory no evidence can be found of a 

significant time trend. This suggests that the previous evidence might have been driven 

by an incorrect model specification. 

 

3. Methodology 

The most common approach to modelling trends in time series is to estimate a linear 

regression of the following form: 
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                            𝑦(𝑡)  =   𝛼 +    𝛽 𝑡  +    𝑥(𝑡),       𝑡  =   1, 2, …,  (1) 

where α and β are unknown parameters, respectively a constant and the coefficient on the 

linear time trend, and x(t) is assumed to be well behaved, namely to satisfy some standard 

properties such as covariance stationarity and integration of order 0 (I(0)). 

 To be more specific, a covariance stationary process {x(t), t = 0, ±1, …}with mean 

μ is said to exhibit short memory or be I(0) if the sum of its autocovariances, defined as 

γ(u) = E[(xt – μ)(xt+u – μ)], is finite, i.e. 

       ∑ ∣ 𝛾(𝑢) ∣𝑢=∞
𝑢=−∞    <    ∞.       (2) 

    An alternative definition is based on the frequency domain – in this case a process 

is said to exhibit short memory if the spectral density function, f(λ) (which is the Fourier 

transform of the autocovariances) is positive and bounded at all frequencies in the interval 

[0, π), i.e., 

                   0    <    𝑓(𝜆)    <    ∞.             (3) 

Examples of short-memory processes include the white noise one and the (stationary) 

AutoRegressive Moving Average (ARMA) models. 

In the context of the model given by Equation (1), one can conclude that there is 

a significant time trend in the series of interest (the ice/snow cover extent in our case) if 

the following null hypothesis can be rejected: 

                     Ho:    β   =   0,              (4) 

in favour of the one-sided alternative: 

                     Ho:    β   <   0,              (5) 

An important issue here is the choice of the appropriate estimator for β in (1). For 

instance, if x(t) is a random variable independently drawn from a Gaussian distribution 

with mean zero and a constant variance, Ordinary Least Squares (OLS) will yield 

unbiased estimates of β, and statistical inference can be made using standard F and t 
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statistics (see, e.g., Hamilton (1994). However, in the presence of weak autocorrelation, 

OLS or Generalized Least Squares (GLS) estimates are only valid if x(t) exhibits short 

memory. In other words, the error term x(t) must be integrated of order 0 (x(t)  ≈ I(0)), a 

condition that is not satisfied by many climatological series. In fact, many earth-related 

series appear to exhibit long memory, namely the infinite sum of their autocovariances is 

infinite, i.e.  

      ∑ ∣ 𝛾(𝑢) ∣𝑢=∞
𝑢=−∞   =    ∞.       (6) 

or, alternatively, in the frequency domain, their spectral density function (f(λ)) has at least 

one pole or singularity in the spectrum, i.e., 

       𝑓(𝜆) → ∞,     𝑎𝑠  𝜆  → 0.                     (7)  

Examples of climatological series with long-memory properties can be found in 

several papers such as Stephenson et al., (2000), Gil-Alana (2005, 2008a, 2017), Vyushin 

and Kushner (2009), Zhu et al. (2010), Lennartz and Bunde (2009), Rea et al. (2011), 

Franzke (2011), Yuan et al. (2014a,b), and more recently,  Yuan et al. (2022), Zhu et al. 

(2023), and Gil-Alana and Carmona (2023). 

Within the category of long-memory models, a very simple one widely used by 

researchers is based on fractional integration, or I(d) with d > 0, with d-differencing being 

required to make the series of interest stationary I(0). Whilst the early literature only 

allowed for integer values of the parameter d (0 for stationary series or 1 for non-

stationary ones), Granger (1980, 1981), Granger and Joyeux (1980), Hosking (1981) 

subsequently analysed the fractional case where d can be any real value.  

Specifically, a process is said to be I(d) if it can be represented as: 

            (1 − 𝐵)𝑑𝑥(𝑡)   =      𝑢(𝑡),          𝑡 = 1,2, . . .,  (8) 
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where B is a backshift function (i.e., Bx(t) = x(t-1)) and u(t) is an I(0) process defined as 

above. In this context, long memory occurs if d is positive, with the spectral density 

function of x(t) going to infinity as the frequency 𝜆 approaches zero: 

       𝑓(𝜆) → ∞,     𝑎𝑠  𝜆  → 0.                (9)  

Note that the polynomial on the left-hand side of (8) can be expressed in terms of 

a Binomial expansion such that, for any real value d, 

(1 − 𝐵)𝑑 = ∑ (
𝑑
𝑗

)∞
𝑗=0 (−1)𝑗𝐵𝑗 = 1 − 𝑑𝐵 +

𝑑(𝑑−1)

2
𝐵2 − ⋯                (10) 

and thus equation (8) can be expressed as 

           𝑥(𝑡)   =   𝑑 𝑥(𝑡 − 1)  −  
𝑑(𝑑−1)

2
 𝑥(𝑡 − 2)   +   . . .   +    𝑢(𝑡).      (11)  

In this context, if d is a non-integer value, x(t) will be a function of all its past history: the 

higher the value of d is, the higher will be the degree of dependence between observations. 

Moreover, if d is positive, the series exhibits long memory as explained above, and mean 

reversion takes place as long as d is smaller than 1, while stationarity holds if d < 0.5. 

 In the empirical application carried out in the following section, we consider the 

following model, 

    y(t)= 𝛼 +   𝛽 𝑡 +  𝑥(𝑡),    (1 − 𝐵)𝑑𝑥(𝑡) = 𝑢(𝑡),      𝑢(𝑡) = 𝜌𝑢(𝑡 − 12) +    𝜀(𝑡) ,

 (12)  

where α and β are unknown parameters to be estimated, t is a time trend, B is the backshift 

operator; d refers to the number of differences required to make u(t) a  I(0) process (a 

monthly AR process in the case of the monthly series under investigation in our case); 

finally, ε(t) is assumed to be a white noise process. We then carry out the Lagrange 

Multiplier (LM) test proposed in Robinson (1994) and widely used for long-memory and 

fractionally integrated processes (e.g., Gil-Alana and Robinson, 1997). 
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4. Data and Empirical Results 

The data used for the analysis are (i) the monthly ice extent series produced by the 

National Snow and Ice Data Center (NSIDC) for the Globe, the Northern Hemisphere, 

and the Southern Hemisphere, from January 1979 to April 2024, and (ii) the monthly 

snow cover extent series constructed by the Rutgers University Global Snow Laboratory 

(GSL) for North America + Greenland, the Northern Hemisphere, and Europe + Asia, 

from January 1967 to April 20242. These series are the result of a collaborative effort 

between The National Centers for Environmental Information (NCEI) - National 

Oceanic and Atmospheric Administration (NOAA) and the Rutgers University Global 

Snow Lab (GSL). All anomalies are relative to the 1991–2020 average. 

[https://www.ncei.noaa.gov/access/monitoring/snow-and-ice-extent/sea-ice/G/6]  

Figure 1 contains plots of the time series. Visual inspection suggests the existence of a 

downward trend in most sea ice extent series (though this is less clear in the case of the 

southern hemisphere), whilst the same is not apparent in the case of the snow cover extent 

series. 

         Tables 1 – 3 report the estimates of the intercept, the time trend and the seasonal 

AR coefficient in the model given by Equation (12) under the assumption that d = 0, i.e., 

imposing that x(t) = u(t) and thus follows a short-memory process. More specifically, 

Table 1 reports the full sample estimates, i.e., from 1971m1 to 2024m12 for the sea ice 

cover extent and from 1972m1 to 2024 for the snow cover extent, whilst Tables 2 and 3 

focus on the most recent periods, namely from 2000m1 and 2015m1 respectively. 

 

INSERT TABLES 1 – 3 ABOUT HERE 

                                                           
2 No snow extent data are available for the Southern Hemisphere from NOAA (2024). 
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            Over the full sample the time trend coefficient β is negative and significantly 

different from 0 in all cases with the exception of the sea ice cover extent series for the 

southern hemisphere (Table 1). By contrast, when considering the period from 2000m1 

(Table 2), a negative and significant trend is estimated for all three sea ice cover extent 

series as well as the Eurasian snow cover extent one; such a trend is also found over the 

period starting in 2015m1 (Table 3) for four out of the six series, namely sea ice cover 

extent in the Northern and Southern Hemispheres as well as snow cover extent in Europe 

+ Asia and in the Northern Hemisphere. However, these results might be biased since 

they have been obtained by assuming short memory in the regression errors in (12) which, 

as previously argued, is questionable. Therefore we performed a short memory / long 

memory test, which is based on the modified Lo’s (1991) statistic; the results strongly 

reject the null hypothesis of short memory in favour of long memory. 

     Therefore, in what follows we relax the short-memory assumption and estimate the 

differencing parameter d from the data along with the other parameters of interest. These 

results are displayed in Tables 4 - 6. 

 

INSERT TABLES 4 – 6 ABOUT HERE 

      

     In particular, Table 4 shows that over the full sample the differencing parameter d is 

positive and significant in all cases; this implies the presence of long memory in the series, 

and thus invalidates the previous results reported in Table 1. The estimated value of this 

parameter is much higher for the sea ice cover extent than for the snow cover extent; more 

precisely, in the case of the former series the estimates of d are 0.85 for the globe, and 

0.81 and 0.75 for the northern and southern hemispheres respectively, whilst in the case 

of the snow cover extent the estimated values are 0.41, 0.39 and 0.37 for the Europe + 
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Asia, North America + Greenland and northern hemisphere series respectively. Most 

interestingly, the time trend coefficients, though still negative, are now not significantly 

different from zero for any of the six series examined. As before, seasonality seems to be 

an important feature of the data.  

Table 5 reports the results for the period starting in 2000m1. These estimates of d are 

rather similar to those in the previous case, with values ranging from 0.74 to 0.84 for the 

sea ice cover extent, and from 0.26 to 0.37 for the snow cover extent, but once again none 

of the β coefficients appear to be statistically significant. Finally, Table 6 shows the 

estimates for the period starting in 2015m1; it can be seen that the estimates of d are in a 

similar range, namely between 0.71 (northern hemisphere) and 0.86 (southern 

hemisphere) in the case of the sea ice cover extent, and between 0.24 (North America + 

Greenland) and 0.40 (northern hemisphere) in the case of the snow cover extent. Once 

more, all the β coefficients are insignificant, which again implies that the series being 

investigated do not exhibit a trend.  

 

5.     Conclusions 

Global warming is one of the main contemporary issues for the planet Earth. One of its 

effects is thought to be a decline in sea ice and snow cover extent, which are crucial 

variables for the global climate system. The available evidence indeed seems to suggest 

that rising temperatures are leading to a marked and sustained fall in both those series 

(see, e.g., Pavlova, 2014; Mudryk, 2020a), this being an additional factor driving climate 

change. 

      The present study revisits this evidence by analysing monthly data on sea ice cover 

extent from January 1979 to April 2024 and on snow cover extent from January 1967 to 

April 2024 for various regions of the world by means of fractional integration methods. 
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The results can be summarised as follows. A statistically significant time trend is found 

when the errors in the regression model are incorrectly assumed to exhibit short memory. 

However, this evidence vanishes when the errors are allowed instead to follow an I(d) 

process with d different from zero and positive, and thus to be characterised by long 

memory (a well-known property of most climatological series)– in this case, the time 

trend becomes insignificant for all series. This implies that previous findings suggesting 

an irreversible decline in both sea ice and snow cover extent might be misleading because 

of an incorrect model specification. However, since human activities have unequivocally 

caused global warming (principally through emissions of greenhouse gases), with global 

surface temperature reaching 1.1°C above 1850–1900 in 2011–2020 (see, e.g. IPCC, 

2023), the case for climate change policies remains overwhelming. 

 Future work could investigate additional issues including (i) the possible presence 

of structural breaks in the data, by following the Bai and Perron (2003) approach or 

alternatively carrying out the tests proposed by Gil-Alana (2008b) and Hassler and Meller 

(2014), both specifically designed for the case of fractional integration, (ii) non-

linearities, applying methods based on Chebyshev’s polynomials (Cuestas and Gil-Alana, 

2016), Fourier transform functions (Gil-Alana and Yaya, 2021; Caporale et al., 2022) or 

neural networks (Yaya et al., 2021), again in the context of fractional integration, and (iii) 

cyclical patterns by estimating appropriate short- and long-memory models incorporating 

them (Caporale and Gil-Alana, 2024).  
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Figure 1: Time series plots 
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Table 1: Estimated coefficients in Equation (12) and d  = 0 using the full sample 

Series Intercept Time trend Seasonal AR 

Sea Ice Extent (1979m1 – 2024m12) 

Sea Ice Extent (Global) 1.3363   (21.29)* -0.00451   (-22.64)* 0.329 

Sea Ice Extent (Northern. H.) 1.4158   (40.13)* -0.00428   (-38.24)* 0.448 

Sea Ice Extent (Southern H.) -0.0780   (-1.47) -0.00022   (-1.35) 0.407 

Snow Coverage Extent (1972qm1 – 2024m12) 

Europe + Asia 0.4090   (3.74)* -0.00107   (-3.55)* 0.389 

North + Greenland 0.1648   (2.62)* -0.00042   (-2.43)* 0.269 

Northern Hem. 0.5723   (3.89)* -0.00149   (-3.68)* 0.472 

*: Significance of the intercept and time trend coefficients at the 5% level. 

 

Table 2: Estimated coefficients in Equation (12) with d = 0 using data starting in 2000m1 

Series Intercept Time trend Seasonal AR 

Sea Ice Extent (1979m1 – 2024m12) 

Sea Ice Extent (Global) 0.7217   (7.92)* -0.00747   (-14.25)* 0.321 

Sea Ice Extent (Northern. H.) 0.3162   (6.70)* -0.00041   (-15.13)* 0.444 

Sea Ice Extent (Southern H.) 0.4071   (5.07)* -0.00335   (-7.26)* 0.433 

Snow Coverage Extent (1972qm1 – 2024m12) 

Europe + Asia 0.1474   (1.18) -0.00126   (-1.76)* 0.190 

North + Greenland 0.0100   (0.12) -0.00009   (-0.04) 0.054 

Northern Hem. 0.1564   (0.99) -0.00135   (-1.49) 0.286 

*: Significance of the intercept and time trend coefficients at the 5% level. 

 

Table 3: Estimated coefficients in Equation (12) with d = 0 using data starting in 2015m1 

Series Intercept Time trend Seasonal AR 

Sea Ice Extent (1979m1 – 2024m12) 

Sea Ice Extent (Global) -0.2396   (-1.57) -0.01484   (-6.80)* 0.245 

Sea Ice Extent (Northern. H.) -0.6752  (-9.81)* -0.00050   (-0.51) 0.418 

Sea Ice Extent (Southern H.) 0.4372   (3.43)* -0.01535   (-8.41)* 0.279 

Snow Coverage Extent (1972qm1 – 2024m12) 

Europe + Asia 0.2408   (1.36) -0.00592   (-2.33)* 0.403 

North + Greenland 0.1106   (0.83) -0.00195   (-1.02) 0.114 

Northern Hem. 0.3494   (1.42) -0.00785   (-2.23)* 0.462 

*: Significance of the intercept and time trend coefficients at the 5% level. 
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Table 4: Estimated coefficients in Equation (12) using the full sample 

Series d   (95% band) Intercept Time trend Seasonal 

Sea Ice Extent (1979m1 – 2024m12) 

Ice (Global) 0.85  (0.74,  0.97) 1.7146 (3.99)* -0.0052  (-0.67) 0.127  

Ice (Northern. H.) 0.81  (0.68,  0.95) 1.3975 (5.08)* -0.0034  (-0.85) 0.351  

Ice (Southern H.) 0.75  (0.67,  0.85) 0.2564 (0.82) -0.0018  (-0.54) 0.070  

Snow Coverage Extent (1972qm1 – 2024m12) 

Europe + Asia 0.41  (0.32,  0.52) 0.8264 (1.40) -0.0018  (-1.07) 0.315  

North + Greenland 0.37  (0.29,  0.47) 1.1512 (0.50) -0.0049  (-0.57) 0.191  

Northern Hem. 0.39  (0.30,  0.50) 0.9287 (1.27) -0.0023  (-1.08) 0.377  

*: Significance of the intercept and time trend coefficients at the 5% level. 

 

Table 5: Estimated coefficients in Equation (12) using data starting in 2000m1 

Series d   (95% band) Intercept Time trend Seasonal 

Sea Ice Extent (1979m1 – 2024m12) 

Ice (Global) 0.84  (0.72,  1.00) 0.7959 (1.79)* -0.0070  (-0.62) 0.118  

Ice (Northern. H.) 0.74  (0.59,  0.92) 0.7318 (2.76) -0.0040  (-0.95) 0.317  

Ice (Southern H.) 0.80  (0.69,  0.95) 0.0317 (0.09) -0.0033  (-0.47) 0.099  

Snow Coverage Extent (1972qm1 – 2024m12) 

Europe + Asia 0.36  (0.25,  0.50) 0.9505 (1.45) -0.0044  (-1.15) 0.413  

North + Greenland 0.27  (0.18,  0.39) 0.2604 (0.87) -0.0012  (-0.81) 0.306  

Northern Hem. 0.34  (0.22,  0.48) 0.2136 (0.39) -0.0021  (-0.68) 0.252  

*: Significance of the intercept and time trend coefficients at the 5% level. 

 

Table 6: Estimated coefficients in Equation (12) using data starting in 2015m1 

Series d   (95% band) Intercept Time trend Seasonal 

Sea Ice Extent (1979m1 – 2024m12) 

Ice (Global) 0.79  (0.66,  0.98) 0.9232 (2.08)* -0.0190  (-1.12) 0.025  

Ice (Northern. H.) 0.71  (0.54,  0.95) -0.3078 (-1.17) -0.0004  (-0.06) 0.480  

Ice (Southern H.) 0.86  (0.71,  1.10) 1.2236 (3.46)* -0.0181  (-1.02) 0.036  

Snow Coverage Extent (1972qm1 – 2024m12) 

Europe + Asia 0.38  (0.23,  0.58) -0.0080 (-1.60) -0.0036  (-0.50) 0.460  

North + Greenland 0.24  (0.11,  0.42) 0.0717 (0.26) -0.0023  (-0.62) 0.070  

Northern Hem. 0.40  (0.25,  0.62) -0.0459 (-0.06) -0.0058  (-0.54) 0.493  

*: Significance of the intercept and time trend coefficients at the 5% level. 

 


