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This paper makes a twofold contribution, First, it develops the dynamic factor model of Barigozzi 
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proposed framework is used to analyse five annual US Real Economic Activity series (Employees, 

Energy, Industrial Production, Manufacturing, Personal Income) over the period from 1967 to 2019 

in order to shed light on their degree of persistence and cyclical behaviour. The results indicate that 

economic activity in the US is highly persistent and is also characterised by cycles with a periodicity 

of 6 years and 8 months.  
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1. Introduction 

In recent decades, dynamic factor models have gained increasing popularity owing to 

their ease of interpretation and their ability to avoid the curse of dimensionality (Barigozzi 

et al., 2016), and are widely used by practitioners for prediction purposes, to create indices 

of economic activity and inflation (Stock and Watson, 1988), and to capture regime 

changes (Hamilton, 1989 and 1994). Such models were initially specified assuming 

stationarity (Stock and Watson, 2002; Bai and Ng, 2002; Forni et al., 2005; Luciani, 

2014). Since most macroeconomic variables in fact do not appear to be stationary, first 

differences have been used in empirical applications to remove non-stationarity from the 

series. However, this approach by construction implies that shocks to the variables in the 

system will have permanent effects, which is a restrictive assumption to make. For that 

reason, Barigozzi et al. (2016) introduced more general Non-Stationary Dynamic Factor 

models for Large Datasets that explicitly address the presence of unit roots in the data.  

Their work in the time domain has been complemented by the contributions of Bai and 

Ng (2002 and 2007) and Bai (2004) in a panel context; specifically, the former have 

proposed methods to test for unit roots in panel dynamic factor models, whilst the 

approach taken by the latter requires the assumption of stationary idiosyncratic 

components. In addition, Banerjee et al. (2014) set up a model where cointegration 

between the common factors and the data, as well as stationarity of the idiosyncratic 

components, are assumed. 

The classical dichotomy between I(1) (unit root or difference-stationary, also called 

stochastic-trend) models or I(0) trend-stationary became very popular after the influential 

paper by Nelson and Plosser (1982) based on this approach. Modelling trends correctly 

is obviously crucial for economic analysis: both removing a (typically linear) 

deterministic trend from time series that are in fact integrated, and incorrectly differencing 
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can result in spurious behaviour of the series (Chan et al., 1977; Nelson and Kang, 1981, 

1984; Durlauf and Phillips, 1988). Early studies had mainly used the Box and Jenkins 

(1970) approach by estimating autoregressive moving average (ARMA) or autoregressive 

integrated moving average (ARIMA) models and deterministic trends. However, in their 

seminal study Nelson and Plosser (1982) applied the newly developed Dickey and Fuller 

(1979) unit root tests and provided evidence of unit roots in 14 US macroeconomic series 

over a long-time span. Stock (1991) then highlighted the inadequacy of reporting only 

test outcomes or point estimates and showed that in the case of the Nelson and Plosser 

(1982) data set confidence intervals were generally wide and included unit values for the 

largest autoregressive root (p = 1) of all series except unemployment and bond yield, but 

also values significantly different from one. 

Subsequently, Campbell and Mankiw (1987) and Cochrane (1988) examined the 

persistence of macroeconomic series. The former used ARIMA models and non-

parametric spectral methods, and concluded that shocks to US GNP are mostly 

permanent, consistently with the Nelson and Plosser's (1982) findings based on stochastic 

differencing. Cochrane (1988) obtained different results using a non-parametric variance 

ratio statistic and other measures based on the spectral density at zero frequency, although 

such measures might not accurately identify the magnitude of the permanent component 

unless it follows a random walk (Quah, 1992). 

Despite their wide use, standard unit root tests (Dickey & Fuller, 1979; Phillips and 

Perron, 1988; Elliot et al., 1996; etc.) have been shown to have very low power (see 

DeJong et al., 1992; Ng and Perron, 2001; Leybourne and McCabe, 1994). For this 

reason, fractional integration models have been developed in recent decades as an 

alternative. This approach offers much greater flexibility in modelling low-frequency 

dynamics that cannot be adequately captured by the Box-Jenkins methodology 
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(Robinson,  1994; Gil-Alaña and Robinson, 1997); in particular, it allows the differencing 

parameter to take any real value, including fractional ones (as opposed to only integer 

ones, as in the classical approach); as a result, a much wider range of stochastic processes 

can be modelled, and valuable information obtained on persistence and mean reversion. 

For instance, Gil-Alana and Robinson (1997) used Robinson's (1994) tests on an extended 

version of the Nelson and Plosser’s (1982) data set and obtained mixed results, with the 

consumer price index and money stock appearing to be the most nonstationary series, and 

industrial production and unemployment rate being the closest to stationarity; they also 

showed that the findings are sensitive to the model chosen for the disturbances (e.g., 

Bloomfield, 1973).  

Given the limitations of setups which only allow for non-stationarity in the form of 

unit roots, this paper aims to go further than Barigozzi et al. (2016) by developing a 

dynamic factor model which incorporates fractional integration for the analysis of hidden 

variables. The proposed framework is then used to analyse the stochastic behaviour of 

US real economic activity. This is important to assess the empirical relevance of different 

macroecnomic theories and the need for stabilisation policies.  

The layout of the paper is as follows. Section 2 reviews standard dynamic factor 

models and their estimation methods, and then introduces the concept of fractional 

integration. Section 3 presents the proposed framework which incorporates fractional 

integration into a dynamic factor model. Section 4 discusses the empirical application to 

five US Real Economic Activity series. Section 5 offers some concluding remarks. 
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2.  A Review of the Existing Models 

2.1  Dynamic Factor Models 

The original Stock-Watson’s (1988) dynamic factor model decomposes the dynamics of 

a set of 𝑛 time series into a common factor and an idiosyncratic part. With series in first 

differences and modelled as second-order autoregressive Gaussian processes 𝐴𝑅(2) (Kim 

& Halbert, 2000) one obtains the following specification: 

𝑦𝑖𝑡 = 𝛾𝑓𝑡 + 𝑒𝑖𝑡 (1) 

𝑒𝑖𝑡 = 𝜓𝑖1𝑒𝑖,𝑡−1 + 𝜓𝑖2𝑒𝑖,𝑡−2 + 𝜀𝑖𝑡 (2) 

𝑓𝑡 = 𝜙1𝑓𝑡−1 + 𝜙2𝑓𝑡−2 + 𝑢𝑡  (3) 

with 𝑖 = {1,…𝑛}; 𝑢𝑡 ~ 𝑁(0,1) and 𝜀𝑖 ~ 𝑁(0, 𝜎𝑖).  

The above model can be expressed in a state-space form as: 

𝑦𝑡 = 𝐻 · ℎ𝑡 + 𝑤𝑡 (4) 

ℎ𝑡 = 𝐹 · ℎ𝑡−1 + 𝑣𝑡  (5) 

where 𝐴, 𝐻 and 𝐹 are parameter matrices, 𝐻 is the measurement matrix and 𝐹 is the 

transition matrix containing the parameters that determine the dynamics of the system.  

The dimensions of the matrices are: 

𝐹 = (𝑟 × 𝑟); 𝐴′ = (𝑛 × 𝑘); 𝐻′ = (𝑛 × 𝑟), 

whilst the other components are vectors: 

𝑦𝑡 = (𝑛 × 1)  ∧ ℎ𝑡 = (𝑟 × 1) ∧ 𝑥𝑡 = (𝑘 × 1). 

The model can be estimated by maximum likelihood through the application of the 

Kalman filter or by Bayesian methods using Gibbs Sampling with the Carter-Kohn 

algorithm (Kim and Halbert, 2017; Blake and Mumtaz, 2017). We follow the Bayesian 

approach because it has the advantage of providing estimates of the complete distribution 

of both the parameters and the underlying variables. 



6 

 

For ease of computation, following Kim and Halbert (2017), we modify the state-space 

representation isolating the disturbance of the dynamics of idiosyncratic terms as follows: 

𝑒𝑖𝑡 = 𝜓𝑖1𝑒𝑖,𝑡−1 + 𝜓𝑖2𝑒𝑖,𝑡−2 + 𝜖𝑖𝑡 

𝑒𝑖𝑡[1 − 𝜓𝑖1𝐿 − 𝜓𝑖2𝐿
2] = 𝜖𝑖𝑡 , (6) 

which leads to the following state-space representation: 

𝑦𝑖,𝑡 = 𝛾𝑖𝑓𝑡 + 𝑒𝑖,𝑡 

𝑦𝑖,𝑡(1 − 𝜓𝑖1𝐿 − 𝜓𝑖2𝐿
2) = (𝛾𝑖𝑓𝑡 + 𝑒𝑖,𝑡)(1 − 𝜓𝑖1𝐿 − 𝜓𝑖2𝐿

2) 

𝑦𝑖,𝑡
∗ = 𝛾𝑖𝑓𝑡 − 𝛾𝑖𝜓𝑖1𝑓𝑡−1 − 𝛾𝑖𝜓𝑖2𝑓𝑡−2 + 𝜖𝑖𝑡 (7) 

The measurement equation is then given by: 

[
 
 
 
 
𝑦1,𝑡

∗

𝑦2,𝑡
∗

𝑦3,𝑡
∗

𝑦4,𝑡
∗ ]

 
 
 
 

= [

𝛾1 −𝛾1𝜓11 −𝛾1𝜓12

𝛾2 −𝛾2𝜓21 −𝛾2𝜓22

𝛾3 −𝛾3𝜓31 −𝛾3𝜓32

𝛾4 −𝛾4𝜓41 −𝛾4𝜓42

] ∗ [

𝑓𝑡
𝑓𝑡−1

𝑓𝑡−2

] + [

𝜖1,𝑡

𝜖2,𝑡

𝜖3,𝑡

𝜖4,𝑡

] 

and the transition equation can be written as: 

[

𝑐𝑡

𝑐𝑡−1

𝑐𝑡−2

] = [
𝜙1 𝜙2 0
1 0 0
0 1 0

] ∗ [

𝑐𝑡−1

𝑐𝑡−2

𝑐𝑡−3

] + [
𝑤𝑡

0
0

]. 

 

2.2 Fractional Integration 

An 𝐼(0) process denoted as 𝑢𝑡 , 𝑡 = 0,±1… is a covariance stationary one with positive 

and finite spectral density at the zero frequency. For instance, it could be a white noise, 

𝑢𝑡  ~ 𝑁(0, 𝜎), though one can also allow for weak autocorrelation of the Auto Regressive 

Moving Average (ARMA)-form. 

An 𝐼(𝑑) process denoted 𝑥𝑡 , 𝑡 = 0, ±1… is defined as: 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡, 𝑡 = 1,2, … (1) 

𝑥𝑡 = 0, 𝑡 ≤ 0 , (2)  

where 𝐿  is the lag operator. 𝑥𝑡 · 𝐿 = 𝑥𝑡−1. 
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A covariance stationary process {𝑥𝑡, 𝑡 =  0, ±1, … } with mean μ is said to exhibit long 

memory if the sum of its autocovariances, i.e.,                                                                             

𝛾(𝑢) = 𝐸[(𝑥𝑡 –  𝜇)(𝑥𝑡+𝑢 –  𝜇)] is infinite:  

∑ ∣ 𝛾(𝑢) ∣𝑢=∞
𝑢=−∞  = ∞, (3)

and a typical process satisfying this property is the I(d) one with d > 0. One can define 𝑑 

for all real numbers by using the following expansion (Robinson, 1994): 

(1 − 𝐿)𝑑 = 1 + ∑
Γ(𝑑 + 1)(−𝐿)𝑗

Γ(𝑑 − 𝑗 + 1)Γ(𝑗 + 1)

∞

𝑗=1

 (5) 

which allows one to specify the model as: 

(1 − 𝐿)𝑑𝑦𝑡 = 𝜇 + 𝛾 · 𝑡 + 𝑢𝑡;          𝑡 = 1,2, … (6) 

where 𝑦𝑡 is the time series of interest, γ is the coefficient on a deterministic linear trend t, 

which allows one to test the deterministic against the stochastic approach, and the 

parameter d provides information about the stochastic behaviour of 𝑦𝑡. 

Granger (1980, 1981), Granger and Joyeux (1980), and Hosking (1981) initially 

proposed these processes after noticing that in the case of many series that appeared to be 

non-stationary the periodogram of the first differenced data was nearly zero at the zero 

frequency, which implied over-differentiation. Therefore, they suggested considering 

fractional values for the differencing parameter d rather than the 𝐼(0) and 𝐼(1) cases only, 

which gave rise to fractional integration models. 

This framework covers a wide range of specifications, such as (Gil-Alana and 

Robinson, 1997):  

o The classic trend stationary model  𝐼(0) if 𝑑 =  0. 

o The unit-root case if 𝑑 =  1. 

o Anti-persistence if 𝑑 <  0. 

o Long memory if 𝑑 is positive and has a fractional value. 
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o Covariance stationarity if 0 <  𝑑 <  0.5. 

o Mean reversion if 𝑑 <  1. 

o Explosive and persistent behaviour if 𝑑 > 1. 

There are various methods for estimating and testing the differencing parameter 𝑑. Some 

are non-parametric, such as the Hurst exponent and the R/S statistic introduced by Hurst 

(1951) for assessing long memory. Semi-parametric classical methods include the log-

periodogram estimator of 𝑑 by Geweke and Porter-Hudak (GPH, 1983), which was later 

refined by Robinson (1995) and Kim and Phillips (2006), among others. Examplesof 

parametric methods are Sowell's (1992) maximum likelihood estimator and the Robinson 

test (1994), the latter being the approach used in the present study. It is a testing procedure 

based on the Lagrange Multiplier (LM) principle for evaluating the null hypothesis 

 (𝐻0: 𝑑 =  𝑑0) for any real value (𝑑0) within an 𝐼(𝑑) framework, as specified in equation 

(1) of this section. It does not require stationarity for its implementation since 𝑑0 is 

allowed to take values outside the stationary range. Details of the functional form of this 

test can be found Gil-Alana and Robinson (1997). 
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3 The Proposed Framework 

3.1 Model Specification 

Our proposed framework introduces fractional integration into a dynamic factor model. 

This approach allows us to filter the information contained in the set of 𝑛 time series to 

analyse the dynamics of the underlying unobserved factors 𝑓𝑡. Specifically, we consider 

the following specification: 

𝑦𝑖𝑡 = 𝛾𝑓𝑡 + 𝑒𝑖𝑡 (1) 

(1 − 𝐿)𝑑𝑖 · 𝑒𝑖𝑡 = 𝜀𝑖𝑡 (2) 

(1 − 𝐿)𝑑 · 𝑓𝑡 = 𝑢𝑡, (3) 

with 𝑖 = {1,…𝑛}  and 𝑢𝑡  ~ 𝑁(0,1); 𝜀𝑖 ~ 𝑁(0, 𝜎𝑖).  

The input series are denoted by 𝑦𝑖 and the hidden common factor is by 𝑓𝑡, while 𝛾 is 

the loading parameter for the factor; finally, 𝑒𝑖𝑡 stands for the idiosyncratic part of the 

series. The main purpose of the model is to estimate the parameters associated with the 

order 𝑑 of the lag polynomial in order to analyse the stationarity of the system, in 

particular of the underlying variable 𝑓𝑡. The lag polynomials can be represented as infinite 

autoregressive processes: 

𝑦𝑖𝑡 = 𝛾𝑓𝑡 + 𝑒𝑖𝑡 (4) 

𝑒𝑖𝑡 = ∑𝜓𝑖𝑗𝑒𝑖,𝑡−𝑗

∞

𝑗=1

+ 𝜀𝑖𝑡 (5) 

𝑓𝑡 = ∑𝜙𝑗𝑓𝑡−𝑗

∞

𝑗=1

+ 𝑢𝑡 . (6) 

This specification allows us to use the information contained in the time series of 

interest to examine the dynamics of non-observed underlying factors. We allow for up to 

10 lags, which appears to be an appropriate lag length given the fact that d decays at a 

hyperbolic rate. 
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3.2 Stationarity Analysis of the Hidden Factor 

In the empirical application presented in the next section the hidden factor 𝑓𝑡 can be 

interpreted as an index of the economic activity driving the business cycle (Stock and 

Watson, 1988), and is filtered from the noise contained in the time series. As already 

mention, we follow a Bayesian approach to estimate the complete distribution of this 

variable using the Carter and Kohn’s (1994) algorithm.  

Once we have fitted 𝑓𝑡 we analyse its stationarity. For this purpose we use recursively 

(considering the interval from 0 to 2, with 0.10 increments) the Robinson (1994) a 

Lagrange Multiplier test for the null hypothesis (𝐻0: 𝑑 =  𝑑0) until we find a value of 𝑑 

which does not reject 𝐻𝑜. The chosen value of 𝑑 is the one for which the test statistic is 

closest to zero in the range (-1.96, 1.96). Since a linear combination of two 𝐼(1) processes 

will also be 𝐼(1) provided that there is no cointegration,  𝑓𝑡 will be an 𝐼(1) process. By 

adding 1 to the estimated order of integration 𝑑 we can obtain the corresponding one for 

the stationary 𝐼(0) counterpart of 𝑓𝑡. Specifically, we consider the following model: 

𝑓(𝑡) =  𝑎 +  𝑏𝑡 +  𝑥(𝑡); (7) 

(1 −   𝐿)𝑑𝑥(𝑡) =  𝑢(𝑡) , (8) 

where 𝑢(𝑡) is a white noise process, and 𝑓(𝑡) is the estimated factor.  

 

3.3. Possible Extensions of the Model 

This procedure can be generalised to accommodate multiple latent factors 𝑓𝑡, which 

requires an adjustment to the state-space model, namely an increase in the dimensions of 

both the measurement and transition equations to capture the interactions between the 

multiple factors.  



11 

 

Further, more complex processes than the Gaussian white noise or basic 

autocorrelation ones can also be considered for the error 𝑢𝑡 – for instance, non-linear, 

heteroscedastic, or regime-switching ones. This introduces greater flexibility and is 

crucial when analysing differenced processes, as it enables the model to capture more 

complex, real-world dynamics that simple autocorrelation structures may fail to represent 

adequately (Robinson, 1994). 

Possible structural breaks represent an additional significant challenge, as ignoring 

them may lead to biased parameter estimates and ultimately inaccurate predictions. 

Appropriate break tests and time-varying parameter models might therefore be required 

to capture the behaviour of the series.  

Finally, incorporating a deterministic trend as an exogenous variable in the state-space 

framework introduces a non-stationary I(1) hidden factor that captures long-term trends 

in the data. This factor could be modelled as a combination of 𝑓𝑡 and a deterministic trend, 

allowing for more accurate modelling of the non-stationary components. To model the 

deterministic trend, a flexible and computationally efficient approach is the one involving 

the use of Chebyshev polynomials, as proposed by Gil-Alana and Cuestas (2012, 2016). 

These polynomials provide a parsimonious representation of non-linear trends. 
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4 Data and Empirical Results 

4.1 Data Description and Sources 

We select the series for the empirical application following the paper by Stock and Watson 

(1988) as well as more recent ones estimating the EURO-STING model (Camacho and 

Pérez-Quiros, 2008; Pacce and Pérez-Quirós, 2019), and the SPAIN-STING model 

(Camacho and Pérez-Quiros, 2009; Arencibia et al., 2017; Gómez et al., 2024), and also 

include the variables used to create the Coincident Economic Activity Index for the 

United States (USPHCI).  This set of variables has been shown to produce accurate GDP 

forecasts by capturing the latent factor representing economic activity.  

More specifically, for the analysis we use the following series retrieved from FRED 

(2024) over the period from 1967 to 2019 (which excludes the Covid-19 pandemic with 

the resulting structural changes), for a total of 635 observations:  

• Industrial Production Index (Index 2012=100): Monthly, Seasonally Adjusted. 

• All Employees: Total Nonfarm Payrolls, Thousands of Persons, Monthly, Seasonally 

Adjusted. 

• Real personal income excluding current transfer receipts: Billions of Chained 2009 

Dollars, Monthly, Seasonally Adjusted Annual Rate. 

• Real Manufacturing and Trade Industries Sales: Millions of Chained 2009 Dollars, 

Monthly, Seasonally Adjusted. 

• Real Energy Consumption, Price Index 1982=100, Monthly, Seasonally Adjusted. 

Deflated from Personal consumption expenditures: Energy goods and services, 

Billions of Dollars. 

In the first instance, we apply first differences to achieve stationarity. Then Augmented 

Dickey-Fuller (1979) and ERS (Elliot et al, 1996) tests are carried out. The results are 

reported in both Table 1 and Table 2. It can be seen that all the series have ADF statistics 
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that are highly negative and p-values that are significantly below 0.05. This suggests that 

all of them are stationary in first differences. Additionally, the series have ERS test 

statistics that are below the critical value of 1.99. This indicates that the null hypothesis 

of a unit root (non-stationarity) can be rejected for all the differenced series. 

Table 1. ADF test for the Economic Activity Series 

 
Computed using the tseries package on R from Trapletti & Hornik (2020) 

 

Table 2. ERS test for the Economic Activity Series 

 
Computed using the urca package on R from Pfaff (2008) 

  

Series ADF statistic ADF p-value

Employees -4.59 0.01

Energy -9.60 0.01

Industrial Production -6.02 0.01

Manufacturing -6.12 0.01

Personal Income -5.82 0.01

Series ERS Statistic Critical Value

Employees 0.673 1.990

Energy 0.092 1.990

Industrial Production 0.657 1.990

Manufacturing 0.258 1.990

Personal Income 0.102 1.990
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The Shapiro-Wilk (1965) test was then employed to assess the normality of the various 

economic indicators. The results are displayed in Table 3. The p-values for all economic 

indicators are 0, which is significantly below the 0.05 threshold. This implies that the null 

hypothesis of normality is rejected for all series.  

Table 3. Saphiro-Wilks test for the Economic Activity Series 

 
   Computed using Royston’s (1982) algorithm. 

 

Figure 1. Real Activity Variables 

 
Source: FRED (2024). The series depicted in the graph are seasonally adjusted, first 

differenced, centred around the mean and scaled by the standard deviation.  

 

Series Shapiro Wilk p-value

Employees 0.92 0.00

Energy 0.94 0.00

Industrial Production 0.90 0.00

Manufacturing 0.98 0.00

Personal Income 0.62 0.00
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Figure 1 shows the time series for all five economic indicators, retrieved from FRED 

(2024) over the period from 1967 to 2019. This period excludes the Covid-19 pandemic 

and its resulting structural changes, comprising a total of 635 observations. 

Table 4. Statistical Summary of the Real Activity Series 

 

 Source: FRED (2024). The series are seasonally adjusted and first differenced. Q1 is the first quartile, Q3 

is the third quartile and IQR is the interquartile distance. Elaboration by author. 

 

Table 4 reports descriptive statistics for the time series analysed, such as the 

mean, median, standard deviation, minimum and maximum values, as well as the 

quantiles and interquartile range (IQR).  

 

4.2 Empirical Results. 

The estimated distribution of the parameters which describe the hidden factor and its 

relationship with the input variables are reported in Table 5. Figure 2 shows the hidden 

factor series together with the input series and helps to understand the hidden factor 𝑓𝑡 as 

an Index of Economic Activity. This variable closely follows the trends of the input series, 

which suggests that it is a good representation of the underlying economic activity.  

  

Series Mean Median SD Min Max Q1 Q3 IQR

Employees 136 171 204 -820 1118 50 265 216

Energy 0.09 0.22 5.61 -42 20 2.90-        2.86        5.76

Industrial Production 0.11 0.15 0.49 -4 1.74 -0.13 0.38 0.51

Manufacturing 1630 1804 7363 -31453 30611 -2662 6356 9017

Personal Income 18 17 57 -761 408 0.60 36 35



16 

 

Table 5. Statistical summary of the parameter’s distributions. 

 
The variables are in the same order as described in the data. The 𝜑 parameters are the 

autoregressive coefficients of the factor, the 𝜆 ones are the loadings and the 𝜎 ones are the 

variances of the idiosyncratic disturbance terms. Q stands for quantile and SD for standard 

deviation. 

Figure 2. The Monthly Index of Economic Activity 

 
The monthly index of economic activity shows the median together with the first 

and third quartile of the factor distribution (dashed). This figure follows Figure 1 

in Stock and Watson (1988) and is based on FRED (2024) data. 

Parameter Q1 Median Q3 Average SD

ϕ1 1.103 1.141 1.178 1.141 0.055

ϕ2 -0.090 -0.032 0.021 -0.034 0.082

ϕ3 -0.095 -0.039 0.015 -0.040 0.082

ϕ4 -0.093 -0.041 0.018 -0.039 0.082

ϕ5 -0.087 -0.031 0.025 -0.031 0.083

ϕ6 -0.077 -0.023 0.034 -0.023 0.082

ϕ7 -0.066 -0.013 0.043 -0.012 0.082

ϕ8 -0.068 -0.014 0.043 -0.013 0.082

ϕ9 -0.061 -0.004 0.049 -0.005 0.083

ϕ10 -0.040 -0.004 0.031 -0.004 0.053

λ1 0.067 0.073 0.081 0.074 0.011

λ2 0.100 0.111 0.123 0.113 0.018

λ3 0.112 0.124 0.136 0.125 0.017

λ4 0.043 0.048 0.053 0.048 0.008

λ5 0.018 0.023 0.028 0.023 0.008

σ1 0.689 0.719 0.751 0.721 0.046

σ2 0.621 0.651 0.682 0.652 0.046

σ3 0.370 0.386 0.402 0.387 0.024

σ4 0.866 0.901 0.937 0.902 0.052

σ5 0.953 0.990 1.029 0.992 0.057
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For the computation of 𝑑 we first allow for a linear time as is common in the unit roots 

literature (Bhargava, 1986, Schmidt and Phillips, 1992), such that the model becomes a 

combination of (7) and (8), i.e., 

    𝑓(𝑡)  =  𝛼 +  𝛽 𝑡  +  𝑥(𝑡),            (1 − 𝐿)𝑑 𝑥(𝑡)  =   𝑢(𝑡),   (6) 

where α and β are jointly estimated with d, and u(t) follows a white noise process with 

zero mean and constant variance. 

The Lagrange multiplier test for the differencing parameter of the hidden factor 𝑑 are 

carried out using three different model specifications and under the assumption of white 

noise residuals; the results can be summarised as follows: 

(i) In the first case, we include a constant and a linear trend, and thus 𝛼 and 𝛽 are 

estimated together with 𝑑. The test provides the following value and confidence 

interval for the differencing parameter:  𝑑 =  2.09 (2.01, 2.18). However, 𝛽 is 

non-significant, therefore we remove the linear trend. 

(ii) In the second case, we allow for a constant 𝑎 but not for a linear trend, namely 

𝛽 = 0. We then obtain the result 𝑑 =  2.10  (2.02, 2.19) with 𝛼 =  0.930 

statistically significant with a t-value of 4.25. 

(iii) In the third case, neither a constant nor a trend are included, i.e. 𝛼 = 𝛽 = 0 a 

priori. We obtain the same result as in case (ii), namely 𝑑 =  2.10  (2.02, 2.19). 
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Next, we allow for autocorrelation in 𝑢(𝑡) and estimate the model using the non-

parametric approximation of Bloomfield (1973) for AR structures. The results are now 

the following: 

(i) With a constant and a linear time trend, 𝑑 =  1.93  (1.72, 2.16). However, the 

linear trend is statistically insignificant. 

(ii) With a constant but without a trend, 𝑑 =  1.94  (1.73, 2.16). Note that the 

constant is significant 𝑎 = 0.937 (with a t-value of 4.06). 

(iii) Without either a constant or a trend, 𝑑 =  1.94  (1.73, 2.16).       

Regardless of the assumption made about the disturbances, the estimated values of 𝑑 

suggest high persistence in the dynamic behaviour of the economic activity.  

Finally, the periodogram of 𝑓(𝑡) was estimated using the squared coefficients of the 

Discrete Fourier Transformation applied to the mean of the estimated common factor and 

scaled by the length of the signal. It can be seen that the biggest value does not correspond 

to the zero frequency (𝑗 = 1) but to 𝑗 = 7 instead, which suggests the existence of cycles 

of periodicity 𝑇/𝑗 = 563/7 =  80 months or 6 years and 8 months. 

 

Figure 2. Periodogram of the Index of Economic Activity. 
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5. Conclusions 

This paper makes a twofold contribution, First, it develops the dynamic factor model of 

Barigozzi et al. (2016) by allowing for fractional integration instead of imposing the 

classical dichotomy between I(0) stationary and I(1) non-stationary series. This more 

general setup is applicable in a variety of contexts and enables one to consider a much 

wider range of stochastic processes and to obtain valuable information about the 

dynamics of the series, such as their degree of persistence and mean reversion. Second, 

the proposed framework is used to analyse the behaviour of five annual US Real 

Economic Activity series (Employees, Energy, Industrial Production, Manufacturing, 

Personal Income) over the period from 1967 to 2019 in order to shed light on their 

persistence and cyclical behaviour. The results indicate that economic activity in the US 

is highly persistent and is also characterised by cycles with a periodicity of 6 years and 8 

months.  

Our findings have important policy implications. Specifically, the evidence that shocks 

have long-lived effects suggests that they originate from the supply side. It is well known 

that traditional stabilisation policies have an important role to play in smoothing the 

amplitude of fluctuations associated with the cyclical behaviour of economic activity and 

generated by demand shocks (Clarida et al., 1999; Woodford, 2003; Blanchard and Riggi, 

2013). By contrast, effective policy responses to supply shocks require structural reforms 

and investment in productivity-enhancing technologies to achieve sustained growth 

(Kydland and Prescott, 1982). Given the evidence presented above it appears that it is the 

latter set of policies that are most appropriate in the case of the US. 
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