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Eigenvalue correlation functions

Hermitian N ×N random matrix H with eigenvalues λ1, . . . , λN .

Goal: eigenvalue density-density correlations at two different energies.

x y

Eigenvalue process
∑
i δλi

, with correlation functions (measures)

ρ1(x) ..= E
∑
i

δ(x− λi) , ρ2(x, y) ..= E
∑
i 6=j

δ(x− λi)δ(y − λj) , . . . .

Connected (or truncated) two-point function

p(x, y) ..= ρ2(x, y)− ρ1(x)ρ1(y) ,

measures eigenvalue density-density correlations at the energies x and y.



Spectral scales

Let H be a Wigner matrix: (Hij : i 6 j) are independent with EHij = 0,

E|
√
NHij |2 = 1, and |

√
NHij |C = O(1).

Scales ω = y−x
2 :

� Macroscopic: ω � 1 (global extent of the spectrum).

� Microscopic: ω � 1/N (eigenvalue spacing).

� Mesoscopic: 1/N � ω � 1.

1/N
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Microscopic eigenvalue correlations

Let %E ..= 1
2π

√
(4− E2)+ be the semicircle law.

To analyse the microscopic correlations, choose an energy E and consider
rescaled eigenvalue process ∑

i

δN%E(λi−E)

with connected two-point function

pE(u, v) =
1

(N%E)2
p

(
E +

u

N%E
, E +

v

N%E

)
.

Microscopic density-density correlations ←→ behaviour of pE for fixed u, v.



Wigner-Gaudin-Mehta-Dyson (WGDM) statistics

Let H be GUE (β = 2) or GOE (β = 1). Then

lim
N→∞

pE(u, v) = Yβ(u− v) (1)

weakly, where

Y2(u) ..= −s(u)2 , Y1(u) ..= −s′(u)

∫ ∞
u

s(v) dv − s(u)2 ,

with the sine kernel

s(u) ..=
sin(πu)

πu
.

For u→∞ we have the asymptotic expansion

Y1(u) = − 1

π2u2
+

1 + cos2(πu)

π4u4
+O

(
1

u6

)
.

Theorem [Universality (ABEKSTVYY, 2009-2016)]. (1) holds for arbitrary
Wigner matrices.



WGMD statistics for mesoscopic separations

Goal:

WGMD statistics for pE on mesoscopic scales 1� u− v 6 N?

I.e., analyse the density-density correlations between energies u and v at
mesoscopic separations.

u− v
pE(u, v)



Macroscopic fluctuations of linear statistics

A different type of fluctuation result, involving correlations of O(N2)
eigenvalues of typical macroscopic separation ω � 1.

E.g. for β = 1 we have [Lytova, Pastur – 2009]

Var
∑
i

f(λi) =
1

2π2

∫ 2

−2
dx

∫ 2

−2
dy

(
f(x)− f(y)

x− y

)2
4− xy

√
4− x2

√
4− y2

+
N2C4(H12)

2π2

(∫ 2

−2
dx f(x)

2− x2√
4− x2

)2

,

where C4(·) is the fourth cumulant.

Any relation to WGDM statistics?



Result

2Nω

Nη Nη

Fix E ∈ (−2, 2) and f, g ∈ C∞c (R). Let

1/N � η 6 ω 6 1 .

Using the notation

f±(u) ..=
1

Nη
f

(
u∓Nω
Nη

)
.

we have∫
pE(u, v)f+(u)g−(v) dudv =

∫
ΥE,β(u, v) f+(u)g−(v) dudv ,



where,

ΥE,1(u, v) = − 1

π2(u− v)2
+

3

2π4(u− v)4
+ E(u, v)

+
1

N2κ2E

(
F1(u, v) + F2(u, v)

∑
i,j

C4(Hij) + F3(u, v)
∑
i

C3(Hii)

)
and

ΥE,2(u, v) = − 1

2π2(u− v)2
+ E(u, v)

+
1

N2κ2E

(
1

2
F1(u, v) + F2(u, v)

∑
i,j

C2,2(Hij) + F3(u, v)
∑
i

C3(Hii)

)
.

Here C·(·) is the cumulant, κE ..= 2π%E =
√

4− E2, and F1, F2, F3 are explicit
bounded elementary functions.

Blue = Average of Yβ , Red = non-universal, E(u, v) = quantitatively
controlled error term.



Remarks

� WGDM statistics valid to leading order on all mesoscopic scales Nω � N .
Fails at macroscopic scale Nω � N .

� For β = 1, the subleading corrections of WGDM are leading order for
Nω �

√
N . For Nω �

√
N , dominant subleading corrections are

non-universal. These become leading order on macroscopic scales
Nω � N .

� Result completely insensitive to size of spectral window Nη � 1. Even at
macroscopic scale Nω � 1, our result is much more precise than [Lytova,
Pastur, 2009].

� After the local rescaling by N%E , the WGDM terms do not depend on E
but the non-universal ones are proportional to %−2E .



Comparison to Gustavsson’s theorem

Gustavsson [2005] analyses mesoscopic correlations of eigenvalue locations
instead of densities for GUE.

Order eigenvalues λ1 6 λ2 6 · · · 6 λN and introduce quantiles γi defined by
i/N =

∫ γi
−2 %x dx. Define normalized eigenvalues

λ̃i
..=

π%γiN(λi − γi)√
logN

.

Theorem. λ̃i ∼ N (0, 1) and Cov(λ̃i, λ̃j) ∼ β, where β = 1− logN (j − i).

Locations of two mesoscopically separated eigenvalues have a covariance of the
same order as their individual variances.

Interpretation: eigenvalues fluctuate as a semi-rigid jelly on the scale√
logN/N .

Fluctuations of eigenvalue locations and density have little to do with one
another.



Some ideas of proof

We can rewrite

pE(u, v) =
1

(N%E)2
Cov(Xη(u), Xη(v)) ,

where Xη(u) ..=
∑
i f

η/%E
(
E + u

N%E
− λi

)
and fε(x) ..= 1

εf
(
x
ε

)
.

Key difficulty, appearing throughout the proof: we are computing the
covariance (to an arbitrary precision) of two weakly correlated random variables:

Cov(Xη(u), Xη(v)) � 1

ω2
, Var(Xη(u)) � 1

η2
,

with 1/N � η 6 ω 6 1.



Main work: compute covariance of Green functions (with E1 − E2 = 2ω)

G = (H − E1 − iη)−1 , F = (H − E2 − iη)−1 .

With notations

M ..=
1

N
TrM , 〈X〉 ..= X − EX ,

we have to compute
E〈G〉〈F ∗〉 .

We do this by deriving a recursive family of Schwinger-Dyson equations,
indexed by a finite tree, in polynomials in expectations of polynomials of the
variables Am, 〈Am〉, Amxy, where A = G,G∗, F, F ∗.



Simple tools

� Resolvent identity zG = H(H − z)−1 − I .

� Cumulant expansion [Stein, 1981], [Barbour, 1986]

E
[
h · f(h)

]
=

l∑
k=0

1

k!
Ck+1(h)E[f (k)(h)] + (Error) .

Can be viewed as a generalization of Gaussian integration by parts to
arbitrary random variables. Alternatively, a quantitative and more precise
version of Stein’s method.

Very powerful for deriving recursive high moment estimates in RMT [He,
K – 2016]. This strategy was subsequetly used to derive local laws [He, K,
Rosenthal – 2017], [Lee, Schnelli – 2017].



How to start

Apply resolvent identity and cumulant expansion to E〈G〉〈F ∗〉, and get

E〈G〉〈F ∗〉 =
1

−z1 − 2EG

(
2

N2
EGF ∗2 +

1

N
E〈G2〉〈F ∗〉+ E〈G〉2〈F ∗〉+W1

)
.

Leading term of order 1/(Nω)2 (will have to be computed precisely by another
Schwinger-Dyson equation).

Error terms have to be estimated. Naive attempt: using the local semicircle
law, we obtain

E〈G〉2〈F ∗〉 = O

(
1

(Nη)3

)
.

Much too big!

Reason: we did not exploit that 〈G〉2 and 〈F ∗〉 are weakly correlated. Solution:
derive further Schwinger-Dyson equations for error terms.



General scheme for a term X:

� If X is an error term and the naive bound is too large, derive a
Schwinger-Dyson equation that expresses X in terms of a family of other
terms.

� If X is a term we wish to compute, derive a Schwinger-Dyson equation
that extracts its main contribution plus error terms.

At each step, every term X gives rise to a set of children S(X) of further terms
(tree).

How do we stop?

1. Identify a large enough set F of terms that is closed under the map
X 7→ S(X).

2. Find bounds that allows to estimate all X ∈ F of a sufficiently high
generation.

Algebra gets somewhat involved.



Tools for stopping

For the stopping in 2, we need much more than the local semicircle law: a
priori bounds from [He, K – 2016] on (Gm)ij , and the estimate

EGm = Om(1) (2)

for all m ∈ N.

(Local semicircle law gives EGm = O(1/ηm−1).)

Interpretation: expected eigenvalue density ρ has uniformly bounded derivatives
of all order down to all mesoscopic scales:

ImEGm = Im

∫
ρ(x)

(x− z)m
dx = (−1)m−1 Im

∫
ρ
(m−1)
1 (x)

x− z
dx

= (−1)m−1
∫
ρ(m−1)(x) · η

(x− E)2 + η2
dx = (−1)m−1(ρ(m−1) ∗ δη)(E) .

Proof: another recursive family of Schwinger-Dyson equations, except that now
it is possible to stop just using the local semicircle law and [He, K – 2016].





Define

Fi(u, v) = gi

(u− E
N%E

,
v − E
N%E

)
.

where

g1(x1, x2) = −
4
(
4 + x1x2 +

√
(4− x21)(4− x22)

)√
(4− x21)(4− x22)

(√
4− x21 +

√
4− x22

)2 ,
g2(x1, x2) =

2(x21 − 2)(x22 − 2)√
(4− x21)(4− x22)

,

g3(x1, x2) =
x21x2 + x1x

2
2 − 2x1 − 2x2√

(4− x21)(4− x22)
.

Error term

E(u, v) = O

(
1

(u− v)5
+

1

N(u− v)3
+

1

N3/2(u− v)2
+

1

N2(u− v)

)
.


