Skip to main content

Multi-omics data analysis for critical disease prediction

Personalised treatment is a new and strategic approach to separates patients into different groups based on their personal response or risk of disease so that treatments can be tailored to the individual patient. However, to fulfil personalised healthcare, advanced tools are in urgent demand to integrate and analyse multi-omics data (genome, proteome, transcriptome, epigenome, metabolome, and microbiom) with clinical, diagnostic and lifestyle data together to generate a full picture of patients. The work will apply novel deep learning techniques to integrate and analyse all data from the database and repositories in order to explore and identify effective biomarkers related to critical disease (e.g. lung cancer), such as imaging biomarkers (CT, PET, MRI) and molecular biomarkers (plasma, serum, cerebrospinal fluid, gene expression). Essential requirement: familiar with programming language in Python or Matlab.

How to apply

If you are interested in applying for the above PhD topic please follow the steps below:

  1. Contact the supervisor by email or phone to discuss your interest and find out if you would be suitable. Supervisor details can be found on this topic page. The supervisor will guide you in developing the topic-specific research proposal, which will form part of your application.
  2. Click on the 'Apply here' button on this page and you will be taken to the relevant PhD course page, where you can apply using an online application.
  3. Complete the online application indicating your selected supervisor and include the research proposal for the topic you have selected.

Good luck!

This is a self funded topic

Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: https://www.brunel.ac.uk/research/Research-degrees/Research-degree-funding. The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.

Meet the Supervisor(s)


Yang Yang - Dr. Yang is a Lecturer in Chemical Engineering Department. She is currently leading the Digital Manufacturing Group, which aims to integrate the advanced computational technologies, such as big data, machine/deep learning, simulation and visualisation, to facilitate manufacturers achieve tangible improvements in key metrics. Her multidisciplinary research spans across diverse industrial sectors, addressing the challenges and driving the industry towards a new revolution. Dr. Yang has a multidisciplinary background. She obtained her BSc and MSc degree in Computer Science from Tianjin University, China and received her PhD sponsored by Overseas Research Scholarships (ORS) and Tetley & Lupton Scholarships (TLS) from University of Leeds. During her PhD, she successfully applied data mining and machine learning techniques to identify the optimal composition of nano-photocatalyst (TiO2). The decisional tool designed and developed by Dr. Yang, which combined process analytical technology (PAT), image analysis and machine learning techniques, was sponsored and adopted by GlaxoSmithKline Pharmaceuticals (GSK) for its nanoparticle product line.  Due to her outstaning performance, Dr.Yang was awarded Chinese Government Award for Outstanding Self-financed Students Abroad in 2010.  Prior to joining Brunel, Dr. Yang worked at Imperial College London and University College London as a postdoctoral researcher. During this period, Dr. Yang accumulated great knowledge and experience in biopharmaceutical manufacturing process and personalised medicine development. Collaborated with UCB and Eli Lily, the leaders of biopharmaceutical industries in UK, Dr. Yang established process models and ecnomic models of biomanufacturing process using discrete-event modelling and Monte Carlo simulation methods. A decision-support tool which combined the process models, ecnomic models and machine learning models for facility fit analysis had been greatly complimented by biopharmaceutical industry users. Supported by Pall Corporation, Merck and Medimmune, Dr. Yang’s research of digital twins for continuous biomanufacturing process awarded funding by Future targeted healthcare manufacturing hub at UCL. She is currently holding Brunel Research Initiative & Enterprise Funding for digital twin system of hydrogen production. Multi-omics data analysis for personalised medicine development is another research intrest of Dr. Yang. She led a collaboration with Shanghai Pulmonary Hospital (China) to construct a decision-support tool with big data analysis for personalized diagnosis and treatment of lung cancer. She is currently collaborating with Life Science Department for cancer and drug dependency analysis.