Skip to main content

Active refrigeration shelf with thermal storage

The research aims at developing a cost heat pipe-based, cost-effective and efficient active shelf design with thermal storage capability for applications in chilled / freezing cabinets. The idea is twofold, firstly to make the shelf within a retail display chiller/freezer a thermally active component and then secondly to include thermal storage for both new and retrofit.

Undertaking these two changes have several major improvements to current systems. These are, reduced electrical and carbon load as the active shelf with PCM requires up to 30% less energy to deliver the same amount of cooling to the displayed goods, with inbuilt thermal storage there is the opportunity to smooth out demand running the freezers at times of either low grid demand or at times of high local generation from PV, wind etc. protect the food from temperature fluctuation due to power outages, help to manage the freezer load as the quantity of the product on the shelf changes during the sales cycle.

There are in excess of 6,500 supermarkets and superstore in the UK retail sector. Out of these stores about 2,500 are larger than 1400 square metres in area with the remainder over 280 square metres in area. Beyond that are a further 40,000 food convenience stores equal to 3% of the country's total electrical load.


Meet the Principal Investigator(s) for the project

Professor Hussam Jouhara
Professor Hussam Jouhara - Having worked in academia and the industry, Hussam has unique expertise in working on applied heat exchangers and energy-related research activities with direct support from research councils and various UK and international industrial partners. He has extensive expertise in designing and manufacturing various types of heat exchangers, including heat pipes and heat pipe-based heat exchangers for low, medium and high temperature applications. His work in the field of heat pipe based heat exchangers resulted in novel designs for recouperators, steam generators & condensers and flat heat pipes. These have been implemented across various industries including, but not limited to: food, electronics thermal management and low to high industrial waste heat recovery and Energy from Waste. Over the last few years, he has successfully managed to achieve new designs for industrial waste heat recovery and many thermal systems that have enhanced the performance of various industrials processes in the UK, Europe and world-wide. He is also an elected member of the Senate of Brunel University London.  Throughout his academic and industrial career, he received over £14.1M research funding from various UK/EU based research councils (RCUK & EU H2020) and from British and European industrial partners. He is a published author of academic books with many filed patents in areas related to heat pipes engineering and manufacturing and Energy from Waste systems. He is a Chartered Engineer and Fellow of both Engineers Ireland (Ireland) and IMechE (UK). Hussam is the founder and the Head of the Heat Pipe and Thermal Management Research Group in Brunel University London.  Major projects as a Principal Investigator in Brunel: Technical Director of: Innovative WAter recoverY Solutions (iWAYS) - H2020 Technical Coordinator of: Heat Pipe Technologies for Industrial Applications (ETEKINA) - H2020 Technical Coordinator of: Prefabrication, Recyclability and Modularity for cost reductions in Smart BIPV systems (PVADAPT) - H2020 Climate and cultural based design and market valuable technology solutions for Plus Energy Houses.  (CULTRAL-E) - H2020 Innovative Polymer-Based Composite Systems for High-Efficient Energy Scavenging And Storage (InComEss) - H2020 Design for Resource and Energy efficiency in cerAMic kilns (DREAM) - H2020 STEP – Heat Pipe Design Challenge for Hot Plasma Cooling - UKAEA High-Power and High-Energy Battery Systems with Integrated Structural Thermal Management for Heavy-Duty Applications - Innovate UK Roadmap for Industry - Academia collaboration between Universidad Pontificia Bolivariana, Argos Cement Company, Brunel University London and Econotherm in heat recovery in large industrial systems - Royal Academy of Engineering Conceptual Feasibility of a Heat Pipe as a Structural and Thermal Member in an Automotive Battery Pack Design - Innovate UK IMproving Power bAttery Cooling Technologies (IMPACT) - Innovate UK Room Temperature Passive Heat Recovery with Heat Pipe - Innovate UK Controllable bidirectional heat recovery device - Knowledge Transfer Network Erva Mate Drying - Innovate UK Active refrigeration shelf with thermal storage - Innovate UK EDUCATION Ph. D. (Mechanical Engineering), 2004, University of Manchester, UK PROFESSIONAL CREDENTIALS Institution of Mechanical Engineers (UK): Chartered Member and Fellow (CEng, FIMechE)  CIBSE (UK): Fellow (CEng FCIBSE) Engineers Ireland: Chartered Engineer and Fellow (CEng, IntPE, FIEI)  Institute of Refrigeration (UK): Member (M.Inst.R)  TEACHING CREDENTIALS P. G. Cert. in Higher Education, 2010, Brunel University, Uxbridge, UB8 3PH, UK. Senior Fellow of the Higher Education Academy (SFHEA), 2017, UK  

Related Research Group(s)

HPHEs technology2

Heat Pipe and Thermal Management - Thermal management; Energy efficiency development; Emission reduction; Energy recovery; Heat-pipe technology; Heat exchangers; Fluid dynamics.


Partnering with confidence

Organisations interested in our research can partner with us with confidence backed by an external and independent benchmark: The Knowledge Exchange Framework. Read more.


Project last modified 13/10/2023