Skip to main content

Developing new AM-CFC multi-materials for optimised designs

Carbon fibre composites (CFC) have been increasingly replacing metals in products requiring lightweight features. However, due to the traditional manufacturing process and poor thermal conductivity, the use of CFC has been limited to structural applications. The vision of the MULTHEM project is to use the different benefits from metals and CFC materials to develop and validate new reliable additively manufactured processes and new metal-polymer multi-materials with structural and cooling features with a more cost-effective approach than traditional methods.

The 26th Climate Change Conference has highlighted the urgent need to reduce global carbon dioxide emissions to limit global warming. The transport sector accounts for approx. 16% of the global carbon emissions and has identified fleet electrification as the primary route to achieving climate neutrality. However, the main challenges are the current weight of components and the cost of new systems to ensure efficiency and long-term sustainability. As a result, the industry has recognised the need for transformative technologies and production methods to develop lighter, more efficient, and cost-effective solutions to enable this transition and achieve climate neutrality.

With their outstanding mechanical strength, Carbon Fibre Composites (CFC) have been increasingly used to replace metals in products requiring lightweight features, such as aircraft or high-performance vehicles. However, due to the traditional manufacturing process and poor thermal conductivity, the use of CFC has been limited to structural applications. For example, batteries, electrical motors, and power electronics, where power losses need to be efficiently dissipated, typically require separate heat exchangers, resulting in heavier and less cost-effective solutions that still utilise bulky designs and heavy materials. MULTHEM aims to develop a reliable and validated Additively Manufactured (AM) CFC process with enhanced thermal conductivity through different material combinations and nanotechnology integration.

This approach will allow the development of components, such as battery and motor housings with dual functionality comprising structural and cooling features and with a more cost-effective approach than traditional methods. This solution will enhance the product performance, first by the weight reduction achieved by designs that only AM enables, and second, by using CFC-metal structures with enhanced thermal conductivity strategies, lighter and stronger than aluminium or steel.

MULTHEM project website

Meet the Principal Investigator(s) for the project

Dr Eujin Pei
Dr Eujin Pei - Academic Background Eujin is Associate Dean of the College of Engineering, Design and Physical Sciences (ADQA-CEDPS), working closely with colleagues to actively monitor and implement quality and standards in relation to academic programmes across the college and providing strategic leadership and management to the faculty. He is the Director for the BSc Product Design Engineering Programme, a Chartered Engineer (CEng), Chartered Environmentalist (CENv) and Chartered Technological Product Designer (CTPD). As a Product Design Engineer during the early days of his career, he developed solutions for companies including Motorola, Inc., LM Ericsson, Sennheiser GmbH & Co. KG, and Rentokil Initial. His research focuses on Additive Manufacturing and 4D Printing. He is the Chairperson for the UK National Standards Committee for Additive Manufacturing - British Standards Institute AMT/8; and UK Head of Delegate for ISO/TC261. He is the Convenor of the International Organisation for Standardisation ISO/TC261/WG4 that develops global Standards for Additive Manufacturing Data and Design; and Convenor of ISO/TC261/JG67 for Functionally Graded Additive Manufacturing. Eujin is a Full Member of the EPSRC Peer Review College as the national agency that assesses proposals for funding Research in Engineering and Physical Sciences. He is a Member of the EPSRC Engineering Prioritisation Panel, and Member of the EPSRC Engineering Fellowship Panel. In 2018, he became a Member of the EPSRC Early Career Forum in Manufacturing Research that involves participating in EPSRC strategic advisory activities.  Eujin is the Editor-in-Chief for the Progress in Additive Manufacturing Journal (SpringerNature), Associate Editor for Journal of Intelligent Manufacturing (Springer) and Associate Editor for Assembly Automation Journal (Emerald). He is an Editorial Board Member for Rapid Prototyping Journal (Emerald), and Member of the Editorial Board for International Journal of Rapid Manufacturing (Inderscience). He is a reviewer for Cogent Engineering (Taylor & Francis); Journal of Manufacturing Processes (Elsevier); Manufacturing Letters Journal (Elsevier); Optics and Lasers in Engineering (Elsevier); Materials & Design (Elsevier); Nature Communications (Nature Publishing Group); International Journal of Manufacturing Technology and Management (Inderscience); Advances in Mechanical Engineering Journal (Sage Publishers); Journal of Engineering Manufacture (Sage Publishers); Journal of Mechanical Design (American Society of Mechanical Engineers, ASME); Recent Patents on Engineering (Bentham Publishers) and the International Journal of Design (Open Access). He is also reviews for Palgrave Books (Macmillan Publishers Ltd.), Laurence King Publishing Ltd. and SpringerNature AG. Research Eujin leads the Additive Manufacturing & 4D Printing Research Group with his interest focusing on Additive Manufacturing and Smart Materials. He is also the Co-Director for the Brunel Centre for Digital Manufacturing. He gained hands-on experience as a Research Fellow at Loughborough University, Brunel University London and at the University of Southampton. He was a Visiting Scientist at Vaal University of Technology and at Central University of Technology in South Africa. His active involvement in professional Memberships enable him to be a step ahead in policies and emerging technologies. He is an active Member of the British Standards Institution TDW4/8 that develops Standards such as BS 8887 for Design for MADE; and BS 8888 for Technical Product Specification. He is a Member of ISO/JTC1/WG12 which develops standardization work for 3D Scanning and 3D Printing within the scope of Information Communication Technology. Eujin also regularly participates in ISO/TC 261/AHG 05; ISO/TC 261/AHG 06; ISO/TC 261/JG 74; and is a Member of ISO/TC 261/CAG Chairman's Advisory Group, and ISO/TC 261/JAG ISO/TC 261 - ASTM F42 Steering group on JG activities. As Convenor for ISO/TC 261/WG4, he oversees the work of  ISO/TC 261 - ASTM F42 joint groups including ISO/TC 261/JG 54 Joint ISO/TC 261-ASTM F42 Group for Fundamentals of Design; ISO/TC 261/JG 57 Joint ISO/TC 261-ASTM F42 Group for Specific Design Guidelines on Powder Bed Fusion; ISO/TC 261/JG 64 Joint ISO/TC 261-ASTM F42 Group for Solid Modelling Support; ISO/TC 261/JG 70 Joint ISO/TC 261-ASTM F42 Group for Optimized Medical Image Data; and ISO/TC 261/JG 73 for Joint ISO/TC 261-ASTM F42 Group for Digital Product Definition and Data Management. Eujin is a Fellow of the Institution of Engineering Designers (FIED). He is a member of the Engineering Council Registration Standards Committee (RSC) that publishes procedures, routes and requirements for the UK Standard for Professional Engineering Competence (UK-SPEC) for registration as Engineering Technician (EngTech), Incorporated Engineer (IEng) or Chartered Engineer (CEng) and Fellow of the Higher Education Academy (FHEA). He is a Member of the Design Research Society (DRS) and Co-Founder of the Inclusive Design Special Interest Group. At Brunel University London, Eujin is a Committee Member for the Innovation Hub which spearheads new initiatives for student entrepreneurs. He has a track record of generating new knowledge and finding solutions for significant impact in the industry. He is active in Knowledge Transfer Partnerships (KTP) and worked with BAE Systems Applied Intelligence Ltd. on several industry projects. In 2016, he was nominated for the BAE Systems Chairman’s Award that acknowledged the efforts and achievements of company partners who delivered performance and furthered the company’s values. Through Knowledge Transfer Partnerships, he has collaborated with SMEs, such as L'Earth Ltd. to conceptualise, develop and retail new 3D Printing bio-materials, in which the product and packaging were recognised with an International WorldStar Award in 2014 for Design excellence. He continues to advise SMEs including Quinteassential Ltd. and Watson EP Ltd. for New Product Development projects. Between 2013-2014, he collaborated and delivered projects for the Leicester Arts and Museum Service where important historical artefacts from the Anglo-Saxon and Roman period were completely digitised and faithfully reproduced using 3D Printing. He worked with the Leicester Transport Heritage Trust to undertake projects such as to completely reverse engineer a historically important Tramcar that was accurately scaled down and 3D Printed. In 2015, he was invited to lead a Masterclass at the Royal College of Art (RCA) for the Include2015 conference on the use of 3D Printing that could support Design practice. Professional Design Career As a Product Design Engineer, Eujin holds numerous Design awards, including the Wearable Master and Field Trial Winner for the Manchester Numbers That Matter Hackathon (2014), International WorldStar Packaging Award (2014), IDSA IDEA Award (2011), Helen Hamlyn Centre for Design 24 hour Inclusive Design Challenge (2011), Motorola Motofwrd (2006), Opus Eyewear (2006), UK Lighting Competition (2006), RSA Design Directions (2005), Popular Science / Core 77 Security Design Competition (2004) and the President's Furniture award (2003). His work has been published in leading international magazines such as Dwell, Icon, FX International and in national newspapers. He has also been interviewed on BBC Radio Leicester and on Power 98FM. Eujin was invited as a judge for the British Promotional Merchandise Association Design competition in 2010. He has exhibited at an international level, including MagicChef at the Panasonic Centre in Tokyo, Japan (2003); and the Clamplight at the NEC Lighting Show in Birmingham, UK (2007). In 2018, his Soundsphere project was exhibited at the Cooper Hewitt, Smithsonian Design Museum which is the only museum in the USA devoted exclusively to historic and contemporary Product Design. 

Partnering with confidence

Organisations interested in our research can partner with us with confidence backed by an external and independent benchmark: The Knowledge Exchange Framework. Read more.


Project last modified 13/12/2023