Skip to main content

Wind turbine digital twin for monitoring and inspection

WindTwin: Digital twin of wind turbines for real time continuous monitoring and inspection

Background

With an estimated 216,000 wind turbines in operation globally there are approximately 3,8000 incidents annually of turbine failures. Research has shown that preventative maintenance costs 25% less than reactive maintenance and predictive maintenance costs 47% less. The solution is to build a digital platform for preventive and predictive maintenance using sensors, big data analytics and advanced visualisation and analysis tools to understand the behaviour and condition of the wind turbine in real-time.

Objective

The objective of this project is to develop a digital/virtual models or twins of a wind turbine which will combine the mathematical models describing the physics of the turbine’s operation, with sensor data collected and processed from real assets during real world operations. These virtual models will allow wind farm operators to predict failure and plan maintenance thus reducing both maintenance costs and downtime.

Benefits

WindTwin offers a digital platform for designing, maintaining and optimising real wind turbines, it will reduce maintenance cost by 30% for end user/operators. Early detection of defects will increase reliability by 99.5% and will reduce losses due to downtime by 70%. It will improve current state of the art by developing a platform capable of monitoring and controlling wind turbines digitally and remotely. WindTwin will enable users to maintain a real wind turbine asset by monitoring a digital dynamic virtual model remotely.

Project Partners


Meet the Principal Investigator(s) for the project

Professor Tat-Hean Gan
Professor Tat-Hean Gan - Professional Qualifications CEng. IntPE (UK), Eur Ing BEng (Hons) Electrical and Electronics Engg (Uni of Nottingham) MSc in Advanced Mechanical Engineering (University of Warwick) MBA in International Business (University of Birmingham) PhD in Engineering (University of Warwick) Languages English, Malaysian, Mandarin, Cantonese Professional Bodies Fellow of the British Institute of NDT Fellow of the Institute of Engineering and Technology Tat-Hean Gan has 10 years of experience in Non-Destructive Testing (NDT), Structural Health Monitoring (SHM) and Condition Monitoring of rotating machineries in various industries namely nuclear, renewable energy (eg Wind, Wave ad Tidal), Oil and Gas, Petrochemical, Construction and Infrastructure, Aerospace and Automotive. He is the Director of BIC, leading activities varying from Research and development to commercialisation in the areas of novel technique development, sensor applications, signal and image processing, numerical modelling and electronics hardware. His experience is also in Collaborative funding (EC FP7 and UK TSB), project management and technology commercialisation.

Related Research Group(s)

woman engineer

Brunel Innovation Centre - A world-class research and technology centre that sits between the knowledge base and industry.


Partnering with confidence

Organisations interested in our research can partner with us with confidence backed by an external and independent benchmark: The Knowledge Exchange Framework. Read more.


Project last modified 12/10/2023