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1 Introduction

Recent advances in network technology have led to more and more control
systems which form the feedback control loop through a network. This kind
control system is called Networked Control System (NCS). The network itself
is a dynamic system and will induce the delays via network communication due
to limited bandwidth. A successful NCS design should take the communication
delays into account, since the delays are widely known to degrade the performance
of the control system. Therefore, the control problem of networked system with
delays has received increasing attention, see e.g., Goodwin et al. (2004), Hu and
Zhu (2003), Krtolica et al. (1994), Matveev and Savkin (2001), Nilsson et al.
(1998), Srinivasagupta et al. (2004), and Tipsuwan and Chow (2003), references
therein.

Since network delays are usually random and time-varying, the existing
deterministic time-delay control methods can not be directly used for the analysis
and design of the NCS Yang et al. (2006, 2007). Recently, there have been significant
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research efforts on the control problems for networked systems with random delays.
The random network delays have been modelled by using various formulations based
on probability and the characteristics of sources and destinations. For example,
in Nilsson et al. (1998) the time delays are varying in a random fashion and
have statistically mutually independent transfer-to-transfer probability distribution.
In Srinivasagupta et al. (2004) the randomcommunicationdelays have been considered
as white in nature with known probability distributions. In Kolmanovsky and
Maizenberg (2001) the delay value is treated as an unknown variable but with known
statistical properties, modelled by a Markov process with a finite number of states.
The probabilistic delay averaging approach is employed to determine the optimal
control in the form which is independent of the delay value. In Luck and Ray (1990),
Ray (1994), Tsai and Ray (1997), and Yaz and Ray (1996), the system measurement
mode with binary switching random delay was established, where the binary switching
sequence was viewed as a Bernoulli distributed white sequence taking on values of
0 and 1. The estimation and control problems have been studied in their paper.
The techniques to deal with random delay range from simple approaches to more
sophisticated approaches.

In this paper, we will continue our previous research on the networked control
with random communication delays (Yang et al., 2006), where a networked
controller based on an observer is designed and the LMI problem with equality
constraint has to be solved. An iterative LMI approach is proposed to solve the
H∞ networked control problem based on dynamic output controller. The NCSs
with both random measurement and control delays are modelled as a stochastic
parameter system with one-step delay which contains two independent Bernoulli
distributed white sequence. A dynamic output controller is designed to exponentially
stabilise the networked system in the sense of mean square and also achieve
the prescribed H∞ disturbance attenuation level. An iterative algorithm is
developed to compute the optimal H∞ disturbance attenuation and the controller
parameters.

The rest of this paper is organised as follows. The control problem is formulated
in Section 2 for NCSs with random communication delays. The stability with random
delays is analysed and theH∞ dynamic output controller is designed inSection 3,which
achieve a desired H∞ disturbance rejection. A simulation result is given in Section 4
to demonstrate the effectiveness of the proposed method. Conclusions are drawn in
Section 5.

Notation. The notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (respectively, positive definite).
E{x} stands for the expectation of the stochastic variable x. Prob{·} means the
occurrence probability of the event ‘·’. IfA is amatrix, λmax(A) (respectively, λmin(A))
means the largest (respectively, smallest) eigenvalue ofA. l2[0, ∞) is the space of square
integrable vectors, and I

+ is the set of positive integer. In symmetric block matrices,
‘*’ is used as an ellipsis for terms induced by symmetry.

2 Problem formulation and preliminaries

Consider the NCS with random communication delays shown in Figure 1.
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Figure 1 The structure of a Networked Control System with random communication delays

The plant is assumed to be of the form{
x(k + 1) = Ax(k) + B1w(k) + B2uc(k),

z(k) = C1x(k) + D11w(k) + D12uc(k),
(1)

where x(k) ∈ R
n is the state, uc(k) ∈ R

m is the control input, z(k) ∈ R
r is

the controlled output, w(k) ∈ R
q is the disturbance input belonging to l2[0, ∞),

A, B1, B2, C1, D11 and D12 are known real matrices with appropriate dimensions.
The measurement with random communication delays is described by{

y(k) = C2x(k)

yc(k) = α(k)y(k) + (1 − α(k))y(k − 1),
(2)

where the stochastic variable α(k) ∈ R is a Bernoulli distributed white sequence with

Prob{α(k) = 1} = E{α(k)} := ᾱ (3)

Prob{α(k) = 0} = 1 − E{α(k)} := 1 − ᾱ, (4)

and yc(k) ∈ R
p is the measured output vector, y(k) ∈ R

p is the output vector, and C2
is known real matrix with appropriate dimension.

Similar to the measurement channel, the control signals sent by the remote
controller to the plant via the communication channel can be described by

uc(k) = β(k)u(k) + (1 − β(k))u(k − 1), (5)

where the stochastic variable β(k) ∈ R, mutually independent of α(k), is also a
Bernoulli distributed white sequence with

Prob{β(k) = 1} = E{β(k)} := β̄ (6)

Prob{β(k) = 0} = 1 − E{β(k)} := 1 − β̄. (7)



An iterative LMI approach to H∞ networked control 5

In this paper, we consider the following dynamic controller for system (1):{
x̂(k + 1) = AK x̂(k) + BKyc(k),

u(k) = CK x̂(k),
(8)

where x̂(k) is the controller state, and AK , BK and CK are the parameters to be
determined.

From equations (1), (2), (5) and (8), the closed-loop system becomes:{
xcl(k + 1) = Aclxcl(k) + Adclxcl(k − 1) + Bclw(k),

z(k) = Cclxcl(k) + Cdclxcl(k − 1) + Dclw(k),
(9)

where

xcl(k) =
[
x(k)
x̂(k)

]
, Acl =

[
A β(k)B2CK

α(k)BKC2 AK

]
,

Adcl =
[

0 (1 − β(k))B2CK

(1 − α(k))BKC2 0

]
, Bcl =

[
B1

0

]
,

Ccl =
[
C1 β(k)D12CK

]
, Cdcl =

[
0 (1 − β(k))D12CK

]
, Dcl = D11.

In order to simplify the following analysis, we separate the stochastic parameters and
deterministic parameters. To do this, we denote

Acl0 =
[

A β̄B2CK

ᾱBKC2 AK

]
, Acl1 =

[
0 0

BKC2 0

]
, Acl2 =

[
0 B2CK

0 0

]
, (10)

Adcl0 =
[

0 (1 − β̄)B2CK

(1 − ᾱ)BKC2 0

]
, Adcl1 =

[
0 0

−BKC2 0

]
,

Adcl2 =
[
0 −B2CK

0 0

]
, (11)

Ccl0 =
[
C1 β̄D12CK

]
, Ccl2 =

[
0 D12CK

]
, (12)

Cdcl0 =
[
0 (1 − β̄)D12CK

]
, Cdcl2 =

[
0 −D12CK

]
, (13)

then equation (9) is rewritten as

xcl(k + 1) = Acl0xcl(k) + Adcl0xcl(k − 1)

+ (α(k) − ᾱ)(Acl1xcl(k) + Adcl1xcl(k − 1))

+ (β(k) − β̄)(Acl2xcl(k) + Adcl2xcl(k − 1)) + Bclw(k),

z(k) = Ccl0xcl(k) + Cdcl0xcl(k − 1)

+ (β(k) − β̄)(Ccl2xcl(k) + Cdcl2xcl(k − 1)) + Dclw(k),

(14)

Since the closed-loop system (14) contains two stochastic quantities α(k) and β(k),
it is actually a stochastic parameter system and we need to introduce the notion of
stochastic stability in the mean-square sense for the problem formulation.
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Definition 1: The closed-loop system (14) is said to be exponentially mean-square
stable if with w(k) = 0, there exist constants κ > 0 and τ ∈ (0, 1) such that

E{‖xcl(k)‖2} ≤ κτk
E{‖xcl(0)‖2}, for all xcl(0) ∈ R

n, k ∈ I
+. (15)

With this definition, our objective is to design the controller (8) for the system (1) such
that, for both measurement and control packet communication delays (2) and (5), the
closed-loop system (14) is exponentially mean-square stable, and theH∞ performance
constraint is satisfied. In other words, we aim to design a controller such that the
closed-loop system satisfies the following requirements (Q1) and (Q2) simultaneously:

(Q1) The closed-loop system (14) is exponentially mean-square stable.

(Q2) Under the zero-initial condition, the controlled output z(k) satisfies
∞∑

k=0

E{‖z(k)‖2} < γ2
∞∑

k=0

E{‖w(k)‖2}, (16)

for all nonzero w(k), where γ > 0 is a prescribed scalar.

3 Main results

In this section, we will first investigate the stability condition for the closed-loop
system (14). The following lemma will be needed in our derivation.

Lemma 1: Let V (η(k)) be a Lyapunov functional. If there exist real scalars λ ≥ 0,
µ > 0, ν > 0 and 0 < ψ < 1 such that

µ‖η(k)‖2 ≤ V (η(k)) ≤ ν‖η(k)‖2, (17)

and

E{V (η(k + 1)) | η(k)} − V (η(k)) ≤ λ − ψV (η(k)). (18)

then the sequence η(k) satisfies

E{‖η(k)‖2} ≤ ν

µ
‖η(0)‖2(1 − ψ)k +

λ

µψ
. (19)

Proof: The proof is similar to Tarn and Rasis (1976). �
The following theorem shows the closed-loop system (14) is exponentially stable in the
mean-square sense.

Theorem 1: Given the controller (8). The closed-loop system (14) is exponentially
mean-square stable if there exist positive definite matrices P and Q satisfying

Q − P ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗

PAcl0 PAdcl0 −P ∗ ∗
aPAcl1 aPAdcl1 0 −aP ∗
bPAcl2 bPAdcl2 0 0 −bP

 < 0, (20)
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where

a = (1 − ᾱ)ᾱ, b = (1 − β̄)β̄.

Proof: Define a Lyapunov functional

V (ηk) = ηT (k) diag{P, Q}η(k), (21)

where

ηT (k) =
[
xT

cl(k) xT
cl(k − 1)

]
and P and Q are positive definite matrices. It follows from (14) that

E{V (η(k + 1)) | V (η(k))} − V (η(k))
= E

{
xT

cl(k + 1)Pxcl(k + 1)
}

+ xT
cl(k)Qxcl(k)

− xT
cl(k)Pxcl(k) − xT

cl(k − 1)Qxcl(k − 1)
= (Acl0xcl(k) + Adcl0xcl(k − 1))T P (Acl0xcl(k) + Adcl0xcl(k − 1))

+ E
{
(α(k) − ᾱ)2

}
(Acl1xcl(k) + Adcl1xcl(k − 1))T P (Acl1xcl(k)

+ Adcl1xcl(k − 1))
+ E

{
(β(k) − β̄)2

}
(Acl2xcl(k) + Adcl2xcl(k − 1))T P (Acl2xcl(k)

+ Adcl2xcl(k − 1))
+ xT

cl(k)Qxcl(k) − xT
cl(k)Pxcl(k) − xT

cl(k − 1)Qxcl(k − 1). (22)

Noting that E{(α(k) − ᾱ)2} = (1 − ᾱ)ᾱ := a and E{(β(k) − β̄)2} = (1 − β̄)β̄ := b,
we have

E{V (η(k + 1)) | V (η(k))} − V (η(k))
= (Acl0xcl(k) + Adcl0xcl(k − 1))T P (Acl0xcl(k) + Adcl0xcl(k − 1))

+ a(Acl1xcl(k) + Adcl1xcl(k − 1))T P (Acl1xcl(k) + Adcl1xcl(k − 1))
+ b(Acl2xcl(k) + Adcl2xcl(k − 1))T P (Acl2xcl(k) + Adcl2xcl(k − 1))
+ xT

cl(k)Qxcl(k) − xT
cl(k)Pxcl(k) − xT

cl(k − 1)Qxcl(k − 1)
= ηT (k)Λη(k), (23)

where

Λ =
[
Λ1 Λ2

ΛT
2 Λ3

]
,

Λ1 = AT
cl0PAcl0 + aAT

cl1PAcl1 + bAT
cl2PAcl2 + Q − P,

Λ2 = AT
cl0PAdcl0 + aAT

cl1PAdcl1 + bAT
cl2PAdcl2,

Λ3 = AT
dcl0PAdcl0 + aAT

dcl1PAdcl1 + bAT
dcl2PAdcl2 − Q.

By Schur complement, equation (20) is equivalent to Λ < 0, we know from
equation (23) that

E{V (η(k + 1)) | V (η(k))} − V (η(k))
= ηT (k)Λη(k) ≤ −λmin(−Λ)ηT (k)η(k) < −εηT (k)η(k), (24)
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where

0 < ε < min{λmin(−Λ), σ}, σ := max{λmax(P ), λmax(Q)}. (25)

From (24), we have

E{V (η(k + 1)) | V (η(k))} − V (η(k)) < − εηT (k)η(k) < − ε

σ
V (η(k))

:= −ψV (η(k)). (26)

Therefore, by Definition 1, it can be verified from Lemma 1 that the closed-loop
system (14) is exponentially mean-square stable. This completes the proof. �

The following theorem provides a sufficient condition for the closed-loop system (14)
to be asymptotically mean-square stable and for the controlled output z(k) to satisfy
the H∞ disturbance attenuation in equation (16).

Theorem 2: Given a scalar γ > 0 and the controller parameters AK , BK , and CK .
The system (14) is exponentially mean-square stable and theH∞-norm constraint (16)
is achieved for all nonzero w(k), if there exist positive definite matrices P and Q
satisfying

Q − P ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Q ∗ ∗ ∗ ∗ ∗ ∗
0 0 −γ2I ∗ ∗ ∗ ∗ ∗

PAcl0 PAdcl0 PBcl −P ∗ ∗ ∗ ∗
aPAcl1 aPAdcl1 0 0 −aP ∗ ∗ ∗
bPAcl2 bPAdcl2 0 0 0 −bP ∗ ∗
Ccl0 Cdcl0 Dcl 0 0 0 −I ∗
bCcl2 bCdcl2 0 0 0 0 0 −bI


< 0. (27)

Proof: It is obvious that equation (27) implies equation (20), hence it follows from
Theorem 1 that the system (14) is exponentially mean-square stable. Next, for any
nonzero w(k), it follows from equations (14) and (23) that Bouhtouri et al. (1999)

E{V (η(k + 1))} − E{V (η(k))} + E{zT (k)z(k)} − γ2
E{wT (k)w(k)}

= ξT (k)Ξξ(k), (28)

where

ξ(k) =

 xcl(k)
xcl(k − 1)

w(k)

 , Ξ =

Ξ11 Ξ12 Ξ13

∗ Ξ22 Ξ23

∗ ∗ Ξ33

 ,

Ξ11 = AT
cl0PAcl0 + aAT

cl1PAcl1 + bAT
cl2PAcl2 + CT

cl0Ccl0 + bCT
cl2Ccl2 + Q − P,

Ξ12 = AT
cl0PAdcl0 + aAT

cl1PAdcl1 + bAT
cl2PAdcl2 + CT

cl0Cdcl0 + bCT
cl2Cdcl2,

Ξ13 = AT
cl0PBcl + CT

cl0Dcl,
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Ξ22 = AT
dcl0PAdcl0 + aAT

dcl1PAdcl1 + bAT
dcl2PAdcl2 + CT

dcl0Cdcl0

+ bCT
dcl2Cdcl2 − Q,

Ξ23 = AT
dcl0PBcl + CT

dcl0Dcl,

Ξ33 = BT
clPBcl + DT

clDcl − γ2I.

By Schur complement, equation (27) is equivalent to Ξ < 0. Thus, we have

E{V (η(k + 1))} − E{V (η(k))} + E{zT (k)z(k)} − γ2
E{wT (k)w(k)} < 0. (29)

Now, summing up equation (29) from 0 to ∞ with respect to k yields
∞∑

k=0

E{‖z(k)‖2} < γ2
∞∑

k=0

E{‖w(k)‖2} + E{V (0)} − E{V (∞)}. (30)

Since η(0) = 0 and the system (14) is exponentially mean-square stable, it is
straightforward to see that

∞∑
k=0

E{‖z(k)‖2} < γ2
∞∑

k=0

E{‖w(k)‖2}. (31)

This ends the proof. �

Next, the controller design problem is solved in the following theorem and the
controller parameters are given in terms of the solution to a matrix ineqaulity.

Theorem 3: Given a scalar γ > 0. The system (14) is asymptotically mean-square
stable and the H∞-norm constraint (16) is achieved for all nonzero w(k), if there
exist positive definite matrices S = ST > 0, V = V T > 0, Q̂1 = Q̂T

1 > 0 and Q̂3 =
Q̂T

3 > 0, real matrices Q̂2, Ac, Bc and Cc such that[
Σ1 ∗
Σ2 Σ3

]
< 0, (32)

where

Σ1 =


Q̂1 − S−1 ∗ ∗ ∗ ∗
Q̂2 − S−1 Q̂3 − V −1 ∗ ∗ ∗

0 0 −Q̂1 ∗ ∗
0 0 −Q̂2 −Q̂3 ∗
0 0 0 0 −γ2I

 < 0, (33)

Σ2 =



A + β̄B2Cc A (1 − β̄)B2Cc 0 B1

Ω1 A + ᾱBcC2 Ω2 (1 − ᾱ)BcC2 B1

0 0 0 0 0
aBcC2 aBcC2 −aBcC2 −aBcC2 0
bB2Cc 0 −bB2Cc 0 0
bB2Cc 0 −bB2Cc 0 0

C1 + β̄D12Cc C1 (1 − β̄)D12Cc 0 0
bD12Cc 0 −bD12Cc 0 0


< 0, (34)
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Σ3 =



−S ∗ ∗ ∗ ∗ ∗ ∗ ∗
−V −V ∗ ∗ ∗ ∗ ∗ ∗
0 0 −aS ∗ ∗ ∗ ∗ ∗
0 0 −aV −aV ∗ ∗ ∗ ∗
0 0 0 0 −bS ∗ ∗ ∗
0 0 0 0 −bV −bV ∗ ∗
0 0 0 0 0 0 −I ∗
0 0 0 0 0 0 0 −bI


< 0, (35)

with

Ω1 = A + ᾱBcC2 + β̄B2Cc + Ac,

Ω2 = (1 − ᾱ)BcC2 + (1 − β̄)B2Cc,

Moreover, the controller parameters are given by

AK = X−1
12 V −1Ac(V S−1 − I)−1V X12, (36)

BK = X−1
12 V −1Bc, (37)

CK = Cc(V S−1 − I)−1V X12 (38)

where the matrix X12 comes from the factorisation I − V −1S = X12Y
T
12 < 0.

Proof: Recall that our goal is to derive the expression of the controller parameters
from (8). To do this, we partition P and P−1 as

P =
[

R X12

XT
12 X22

]
, P−1 =

[
S Y12

Y T
12 Y22

]
, (39)

where the partitioning of P and P−1 is compatible with that of Acl0 defined in
equation (10). Define

T1 =
[

S I

Y T
12 0

]
, T2 =

[
I R

0 XT
12

]
, (40)

which imply that PT1 = T2 and TT
1 PT1 = TT

1 T2.
By applying the congruence transformations diag{T1, T1, I, T1, T1, T1, I, I}

to equation (27) and defining

TT
1 QT1 =

[
SQ̂1S ∗
Q̂2S Q̂3

]
,

we obtain[
Σ11 ∗
Σ12 Σ13

]
< 0, (41)
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where

Σ11 =


SQ̂1S − S ∗ ∗ ∗ ∗
Q̂2S − I Q̂3 − R ∗ ∗ ∗

0 0 −SQ̂1S ∗ ∗
0 0 −Q̂2S −Q̂3 ∗
0 0 0 0 −γ2I

 < 0, (42)

Σ12 =



AS + β̄B2CKY T
12 A

Ω11 RA + ᾱX12BKC2

0 0
aX12BKC2S aX12BKC2

bB2CKY T
12 0

bRB2CKY T
12 0

C1S + β̄D12CKY T
12 C1

bD12CKY T
12 0

×

(1 − β̄)B2CKY T
12 0 B1

Ω12 (1 − ᾱ)X12BKC2 RB1

0 0 0
−aX12BKC2S −aX12BKC2 0
−bB2CKY T

12 0 0
−bRB2CKY T

12 0 0
(1 − β̄)D12CKY T

12 0 0
−bD12CKY T

12 0 0


< 0, (43)

Σ13 =



−S ∗ ∗ ∗ ∗ ∗ ∗ ∗
−I −R ∗ ∗ ∗ ∗ ∗ ∗
0 0 −aS ∗ ∗ ∗ ∗ ∗
0 0 −aI −aR ∗ ∗ ∗ ∗
0 0 0 0 −bS ∗ ∗ ∗
0 0 0 0 −bI −bR ∗ ∗
0 0 0 0 0 0 −I ∗
0 0 0 0 0 0 0 −bI


< 0, (44)

with

Ω11 = RAS + ᾱX12BKC2S + β̄RB2CKY T
12 + X12AKY T

12,

Ω12 = (1 − ᾱ)X12BKC2S + (1 − β̄)RB2CKY T
12.

By applying the congruence transformations diag{S−1, I, S−1, I, I, I, R−1, I,
R−1, I, R−1, I, I} to equation (41), we obtain[

Σ21 ∗
Σ22 Σ23

]
< 0, (45)
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where

Σ21 =


Q̂1 − S−1 ∗ ∗ ∗ ∗
Q̂2 − S−1 Q̂3 − R ∗ ∗ ∗

0 0 −Q̂1 ∗ ∗
0 0 −Q̂2 −Q̂3 ∗
0 0 0 0 −γ2I

 < 0, (46)

Σ22 =



A + β̄B2CKY T
12S

−1 A

Ω21 A + ᾱR−1X12BKC2

0 0
aR−1X12BKC2 aR−1X12BKC2

bB2CKY T
12S

−1 0
bB2CKY T

12S
−1 0

C1 + β̄D12CKY T
12S

−1 C1

bD12CKY T
12S

−1 0

×

(1 − β̄)B2CKY T
12S

−1 0 B1

Ω22 (1 − ᾱ)R−1X12BKC2 B1

0 0 0
−aR−1X12BKC2 −aR−1X12BKC2 0
−bB2CKY T

12S
−1 0 0

−bB2CKY T
12S

−1 0 0
(1 − β̄)D12CKY T

12S
−1 0 0

−bD12CKY T
12S

−1 0 0


< 0, (47)

Σ23 =



−S ∗ ∗ ∗ ∗ ∗ ∗ ∗
−R−1 −R−1 ∗ ∗ ∗ ∗ ∗ ∗

0 0 −aS ∗ ∗ ∗ ∗ ∗
0 0 −aR−1 −aR−1 ∗ ∗ ∗ ∗
0 0 0 0 −bS ∗ ∗ ∗
0 0 0 0 −bR−1 −bR−1 ∗ ∗
0 0 0 0 0 0 −I ∗
0 0 0 0 0 0 0 −bI


< 0, (48)

with

Ω21 = A + ᾱR−1X12BKC2 + β̄B2CKY T
12S

−1 + R−1X12AKY T
12S

−1,

Ω22 = (1 − ᾱ)R−1X12BKC2 + (1 − β̄)B2CKY T
12S

−1.

Now define the change of controller parameters as follows:

Ac = R−1X12AKY T
12S

−1, Bc = R−1X12BK , Cc = CKY T
12S

−1 (49)
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and let

V = R−1, (50)

we can get (32) immediately.
Furthermore, if thematrix inequality (32) is feasible, thenwehave

[ −S−1 −S−1

−S−1 −V −1

]
< 0,

i.e.,
[

S I
I R

]
> 0. It follows directly from PP−1 = I that I − RS = X12Y

T
12 < 0. Hence,

one can always find square and nonsingular X12 and Y12 (Scherer et al., 1997).
Therefore, equations (36)–(38) are obtained from equation (49), which concludes the
proof. �

Remark 1: In view of equations (36)–(38), we could make the linear transformation
on the controller

x̄(k) = V X12x̂(k), (51)

and then obtain a new representation form of the filter as follows:{
x̄(k + 1) = AK x̄(k) + BKyc(k),

u(k) = CK x̄(k),
(52)

where

AK = Ac(V S−1 − I)−1, BK = Bc, CK = Cc(V S−1 − I)−1. (53)

We can now see from (53) that, the controller parameters can be obtained directly by
solving equation (32) without solving I − RS = X12Y

T
12 for X12.

However, (32) is a nonlinear matrix inequality. Therefore, we can not solve it by
standard LMI ToolBox (Boyd et al., 1994). Now we denote

W = S−1, (54)

then (32) can be changed as[
Σ4 ∗
Σ2 Σ3

]
< 0, (55)

with

WS = I, V R = I, (56)

where

Σ4 =


Q̂1 − W ∗ ∗ ∗ ∗
Q̂2 − W Q̂3 − R ∗ ∗ ∗

0 0 −Q̂1 ∗ ∗
0 0 −Q̂2 −Q̂3 ∗
0 0 0 0 −γ2I

 < 0, (57)

and Σ2 and Σ3 see equations (34) and (35), respectively.
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Thus we can see that the nonlinear matrix inequality (32) is equivalent to a linear
matrix inequality (55) with the equality constraints (56). This problem can be solved
via the Cone Complementarity Linearisation Method (CCLM) (El Ghaoui et al.,
1997) or the Sequential Linear Programming Matrix Method (SLPMM) (Leibfritz,
2001). The principle of CCLM and SLPMM algorithm is that if the LMI

[
W I
I S

]
≥ 0

is feasible in the n × n matrix variables W > 0 and S > 0, then trace(WS) ≥ n and
trace(WS) = n if and only if WS = I . So the equality constraints in equation (56) can
be weakened to the following semi-definite programming relaxations:

[
W I

I S

]
≥ 0,

[
V I

I R

]
≥ 0. (58)

We now extend the SLPMMto solve the above problemby the iterative LMI approach
(Lin et al., 2004). The algorithm can be summarised as follows:

Step 1: Given the maximum iteration times N and the iteration accuracy ε.

Step 2: Find a feasible solution to equations (55) and (58), and let W (k) = W ,
S(k) = S, V (k) = V , R(k) = R, k = 0.

Step 3: Find a set of optimal solution Q̂1, Q̂2, Q̂3, Ac, Bc, Cc, W, S, V, R such that

min
subject to (55) and (58)

trace(WS(k) + W (k)S + V R(k) + V (k)R) + δ, δ = γ2.

Step 4: Substitute the obtainedmatrix variables (Q̂1, Q̂2, Q̂3, Ac, Bc, Cc, W, S, R, V, γ)
into (32). If condition (32) is satisfied, with

|trace(WS(k) + W (k)S + V R(k) + V (k)R) − 4n| ≤ ε,

then output the feasible solutions (Q̂1, Q̂2, Q̂3, Ac, Bc, Cc, W, S, R, V, γ). EXIT.

Step 5: If k > N , EXIT.

Step 6: Compute ρ∗ ∈ [0, 1] such that

min
ρ∈[0,1]

{
trace

(
W (k) + ρ

(
W − W (k)))(S(k) + ρ

(
S − S(k)))

+ trace
(
V (k) + ρ

(
V − V (k)))(R(k) + ρ

(
R − R(k)))}.

Step 7: Let

W (k) = W (k) + ρ∗(W − W (k)), S(k) = S(k) + ρ∗(S − S(k)),
V (k) = V (k) + ρ∗(V − V (k)), R(k) = R(k) + ρ∗(R − R(k)),

and k = k + 1, go to Step 3.
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4 An illustrative example

In this section, we aim to demonstrate the effectiveness and applicability of the
proposed method. For this purpose, we consider the system described by (1) with
parameters as follows:

A =

−0.21 −0.02 0.01
2.4 0.81 0.059
−79 2.6 0.01

, B1 =

 0 0
0.1 0.1
0 0.1

, B2 =

 −1 −1
−10 1
−7 −5

,

C2 =
[
1 0 0
0 1 0

]
, C1 =

[
1 0 0

]
, D11 =

[
0 0

]
, D12 =

[
0 0.1

]
.

We assumed the random communication delays probabilities ᾱ = 0.9 and β̄ = 0.9.
Solving the optimisation problem using SPLMM with SeDuMi solver, yields the
minimum value γmin = 0.2606 and the corresponding controller parameters are

AK =

 0.0225 −0.0681 −0.0009
2.1243 −0.6375 0.0011

−85.3292 4.0722 −0.0193

, BK =

 0.0494 0.0106
−1.1151 −0.3955
34.2128 0.7867

,

CK =
[−0.0637 −0.1118 −0.0069

0.5342 0.1971 0.0001

]
.

If the random communication delays probabilities are changed to ᾱ = 0.8 and β̄ = 0.8,
then the optimal disturbance attenuation is γmin = 0.3229, and the corresponding
controller parameters are

AK =

 −0.0670 −0.0583 0.0025
2.7356 0.2111 0.0283

−86.3615 2.0655 −0.0270

, BK =

 0.0187 −0.0004
−0.6228 −0.1889
18.0708 −1.2288

,

CK =
[
0.0086 −0.0651 −0.0047
0.1587 0.1011 −0.0014

]
.

If the random communication delays probabilities are changed to ᾱ < 0.7900 and
β̄ < 0.7789, then the feasible solutions cannot be found.

From the above simulation results, we can see that the H∞ performance with
the probability of data communication delays is bigger than that without data
communication delays. We can conclude that the H∞ disturbance attenuation
performance will deteriorate if the data packet communication delays are severe.

5 Conclusions

In this paper, an iterative LMI approach has been presented to investigate the control
problem for NCSs with random communication delays. A dynamic output controller
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has been designed to achieve a desired H∞ disturbance attenuation level based on
a stochastic parameter system that the resulting closed-loop NCS is modelled as.
The optimal H∞ disturbance attenuation and the controller parameters are obtained
by solving the iterative LMI problem. Simulation results have demonstrated the
feasibility of our control scheme. Our future research will extend the recent results to
NCSs with multiple random delays.
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