Java [0]


Introduction


For this exercise we will edit and manually compile a couple of simple Java applications and an applet, using only the JDK. This will help you better understand the process of making and running applications.


Using Java is a two step process – first the source code is ‘compiled’ into “bytecode”, and then the bytecode is executed by the Java Virtual Machine.





You will need to answer individually the numbered questions included at the end of this handout and submit them on a floppy disk as part of your portfolio on disk in March.


Java and the Console


Our first effort will be the mysteriously traditional “Hello World” program. First, open a command prompt window, make a new directory for your work (mkdir java) and change into it (cd java). To use the Sun JDK you must ensure the shell can find it:        	�	SET PATH="C:\Program Files\j2sdk_nb\j2sdk1.4.2\bin";%PATH%





Now create a text file called HiWorld.java containing the following source:





 	public class HiWorld {


   		public static void main(String[] sArguments) {


//Display the message


System.out.println("Hello World!");


}


}


�You can use Notepad for this (type notepad HiWorld.java). You must match upper and lower case in the file name.


Save the file and compile it:


	javac HiWorld.java


You should now have a compiled bytecode file HiWorld.class. You can now run your first Java application and get a cute message from your PC:


	java HiWorld





Compare the Java source code above with its JavaScript equivalent that you saw last year:





<HTML>


<HEAD>


      <TITLE>Hello World</TITLE>


</HEAD>


<BODY>


      <SCRIPT language="JavaScript">


			// Display the message


            document.write("Hello World!");


      </SCRIPT>


</BODY>


</HTML>





You should be able to see some obvious similarities between the languages: 


Semicolons terminate statements


The program is structured into blocks using braces


println is some kind of method that sends text to the screen


An obvious difference is that as Java code is portable we can’t know where it will be used, so we have to give much more detail about what’s going on when the program starts up (the mystical gibberish in the first two lines).


 


This program is a bit impersonal – try customising it to use your name, stored in a String object. Modify HiWorld.java to be:





 	public class HiWorld {


   		public static void main(String[] sArguments) {


String sMyName="Xena";


//Display the message


System.out.println("Hello "+sMyName);


}


}





Now try compiling and running it.


Obviously, this isn’t very portable – most people have somebody else’s name. We can have our application read in the name to be used as an ‘argument’ on the command line:


  


 	public class HiWorld {


   		public static void main(String[] sArguments) {


//Display the message


System.out.println("Hello "+ sArguments[0]);


}


}





Pass your name to the application by adding it to the end of the command line:


java HiWorld Xena


The command-line arguments are stored in the array sArguments. The first one will of course be given an index number of zero.





Go back and try running HiWorld without giving any name:





java HiWorld





The system clearly doesn’t like it! Java is much stricter about most things than JavaScript, so you’ll have to be much more careful to ensure that your code is valid. In this case the problem is that sArguments[0]doesn’t exist if we don’t give any name. To avoid trouble we must check that arguments exist before trying to use them. The number of items in an array is available as array.length; if this is greater than zero then we have been given at least one name. We can use this to make the code more robust:


�
public class HiWorld {


   	public static void main(String[] sArguments) {


   		if (sArguments.length>0) {


		  //Display the message


            System.out.println("Hello "+ sArguments[0]);


		} else {


		  System.out.println("You must give a name");


		}


     }


}





Try out this code. What will happen if you put more than one name on the command line?





We can of course use Java for computation. Create the new source file AgeCalc.java given below:





public class AgeCalc {


        public static void main(String[] sArguments) {


		if (sArguments.length>0) {


int iRelAge;


			int iBirthYear=Integer.parseInt(sArguments[0]);


			iRelAge=1995-iBirthYear;


			System.out.println("You are " + iRelAge 


 + " years older than Java.");


  	      }


	}


}


      


Compile and run this, giving your year of birth.





We have already seen how we can make decisions that alter the flow of the program. Modify AgeCalc.java as follows:





public class AgeCalc {


       public static void main(String[] sArguments) {


		if (sArguments.length>0) {


			int iBirthYear=Integer.parseInt(sArguments[0]);


			System.out.print("You're a child of the ");


			if (iBirthYear>1979)


				System.out.println("80's!");


			else if (iBirthYear>1969)


				System.out.println("70's!");


		}


       }


}





Where an if clause will contain only a single statement, we can get away without enclosing it in braces.


Exercise


Try extending AgeCalc to cover all decades. You may want to do some research into the  “switch” statement.


Java and the Magic Window


Create (manually) the following applet:





import javax.swing.*;


import java.awt.*; 





public class AlloWorld extends JApplet{


	public void init() {


		Container cPane = getContentPane();


		cPane.add(new JLabel("Allo? World?")); 


	}


}�


along with a matching web page:





<HTML><HEAD>


<TITLE>Trivial Applet</TITLE>


</HEAD><BODY>


<APPLET CODE="AlloWorld.class" HEIGHT="100" WIDTH="100">


		</APPLET>


</BODY></HTML>�


You can now test your applet:





appletviewer AlloWorld.html 





Questions


Why does the applet viewer insist on being given an HTML page rather than going straight to the .class file?


The Java compiler must be invoked with “javac HiWorld.java” while the JVM needs “java HiWorld”. Why does the compiler need the file extension whereas the JVM can figure it out? 


Hand in an amended version of AgeCalc that covers birthdates from at least the fifties to the nineties. Bonus marks if you deal properly with birthdates outside the 20th century. [Supply just the Java source code including comments explaining how it works - remember to make sure it compiles though!]


Further Work


Go back and recompile the first example as follows:


	javac -verbose HiWorld.java


What is this telling you?


In particular, what does the last line tell you?


Try comparing compilation times for HiWorld, AgeCalc and the AlloWorld applet, and any other Java source you have handy - can you explain any differences you find?


References/Further Reading


D. Bell and M. Parr: “Java for Students” 3rd edition, Prentice Hall (2002)


J. Zukowski: “Mastering Java 2” Sybex Inc. (2002)


R. Cadenhead: “Sams Teach Yourself Java 2 in 24 Hours”, 3rd edition, Sams Publishing ISBN: 0672324601 (2002)





--


J.J. Nebrensky  13/01/2005


EE2260S Networks and Programming Workshop: Week 14


Page: � PAGE �3�











