Scripting and Object Models: JavaScript Redux

Introduction

JavaScript is an object-oriented, event driven computer language, originally designed for client-side scripting in web browsers.

The aim of this session is re-visit some aspects of JavaScript that were covered last year. You will need to answer the numbered questions included in this handout and submit them on floppy disk as part of your portfolio in March. Scripts will be assessed by being run under Netscape Navigator 7.02.

Debugging

A fancy word for finding (and correcting) mistakes. Normally, if Netscape Navigator hits a problem with a script it will just stop, probably leaving a blank page. To get a clue as to what is going on, enter javascript: into the URL box – this will pop up a console that can show messages from the JavaScript interpreter. Although this will help you find where the problem is, it isn’t too good at guessing what it is – it can’t read your mind to see what the script should do.

Hiding scripts from old browsers

There are still a few older browsers knocking about that don’t know about JavaScript, and so don’t recognise the SCRIPT tag, which means they’ll display the actual script itself. To save this happening the actual scripting code is hidden from them by enclosing it in HTML comments, as in the example below (the newer browsers cheat and look inside the comments to find the script):

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

<!-- hide script from old browsers

document.write("Hello World.");

 	 // end hiding script -->

</SCRIPT>

<NOSCRIPT>

 		<P>Goodbye, cruel JavaScript-free world!

</NOSCRIPT>

</BODY>

</HTML>

A script like the one above would only give a blank page in an older browser, which is a bit unfriendly. We get round this with the NOSCRIPT tag – older browsers ignore it and display the contents. Newer browsers will normally hide the contents, but can show them on screen if the user has disabled JavaScript for some reason. You can have several NOSCRIPT sections in one page, if needed.

All your pages (and submitted exercises!) should have the scripting hidden (though of course you might not need a separate NOSCRIPT section for each scrap of script).

Question 1

Question 1 goes here.

Events

An ‘event-handler’ tells the browser which part of your script to execute when the relevant event (see table 1) occurs. Let’s try out a simple example first:

<HTML>

<HEAD>

<TITLE>Go on, click me</TITLE>

</HEAD>

<BODY><FORM METHOD="POST" ENCTYPE="text/plain">

<INPUT TYPE="button" VALUE="Me"

onClick="alert('You clicked me');">

</FORM></BODY>

</HTML>

The FORM stuff is needed to keep Netscape happy. The page contains a single button which, when clicked, puts up an alert box.

Exercise

Try out the script above. Can you change the message in the box to You clicked 'me'? (Remember that JavaScript uses the backslash for certain special characters...)

Functions

Now, we could just stack up all the script for an event in one long line, but this soon gets hard to follow and difficult to maintain, especially if we have a lot of buttons that do similar things. The usual solution is to have all of the event handlers jump to the relevant section of your script, which in turn means that we need some way to identify a particular section of code. The mechanism has already been introduced in the lecture course – at its simplest a ‘function’ is just a block of code with a name:

<HTML>

<HEAD>

<TITLE>Go on, click me</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!-- hide script from old browsers

function buAlert() {

alert("You clicked me");

}

// end hiding script -->

</SCRIPT>

</HEAD>

<BODY><FORM METHOD="POST" ENCTYPE="text/plain">

 <INPUT TYPE="button" VALUE="Me" onClick="buAlert();">

</FORM></BODY>

</HTML>

The function command tells JavaScript that we are defining the new function buAlert, so it won’t execute the code immediately, but will wait until it’s called when the button is clicked. Functions can be called from any part of your script, not just from an event handler. They can call other functions in turn, and a function can even call itself (in which case the script can end up going round and round for ever – so you must make sure that it will stop at the appropriate point...).

Exercise

Try out the script above. Can you change the message in the box to You clicked 'me'?

Question 2

Question 2 goes here.

JavaScript Objects

 ‘Objects’ are combinations of ‘properties’ (which have values, similarly to the variables you have used so far) and methods (which are functions specialised for working with that type of object or its constituents).

The core ECMAScript language has several classes of object pre-defined:

String

Date

Math

Array

Boolean

Function

Number

RegExp

Date objects includes methods for working with dates and times, while the Math class includes methods related to calculation (such as sin()). For the first exercise we will look at String, which contains methods for manipulating text. These classes and the methods each contains are discussed on the Netscape site in chapter 11.

Exercise

To start off, create the following file:

<HTML><HEAD>

 <TITLE>Object Example</TITLE>

</HEAD><BODY>

 <SCRIPT language="JavaScript">� <!-- hide script from old browsers

var MyText = new String("This Is A String Of Characters!");

document.write("It has "+MyText.length+" characters
");

document.write(MyText.toLowerCase());

 // end hiding script -->

 </SCRIPT>

</BODY></HTML>

The methods associated with String objects fall into two main groups: those which actually manipulate the text data, such as changing case or extracting a given substring, and some that generate marked up HTML, such as bold(). Try out some of the other String methods, such as toUpperCase(), strike() and blink().Working with text is an important part of commercial computing: you should already have had a look at the various methods available to String objects such as concat(), split(), slice(), substring(), and substr(); and know where to find reference information about what they do.

Question 3

Question 3 goes here.

Question 4

Question 4 goes here.

To form a “pig Latin” phrase from an English language phrase, the translation proceeds one word at a time. To translate each word, move the first letter of the English word (if it is not a vowel) to the end of the word and add the letters “ay”. If the first letter of the English word is a vowel place it at the end of the word and add “y” (except for “a” instead add “yy”). Thus, the word “jump” becomes “umpjay”, the word “evil” becomes “viley”, and the word “ace” becomes “ceyy”. Blanks between the words remain as blanks.

The following script, js_ex5.htm, translates English to Pig Latin, assuming the English phrase consists of words separated by blanks - no punctuation marks - and that there are no capital letters.

<HTML>

<HEAD>

<TITLE>DHTML - Pig Latin</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!-- hide script from old browsers

	// Translate English phrase to Pig Latin

	function transEngToPig(engPhrase) {

		var inWord = new String("");

		var outWord = new String("");

		var pigPhrase = new String("");

		// Create array containing words in phrase

		var wordList = engPhrase.split(" ");

		// Convert each word in turn

		for(count=0; count<wordList.length; count+=1) {

			// Create place holder

			inWord=wordList[count].valueOf();

			// Skip single-letter words

			if (inWord.length==1) continue;

			// Process word

			switch (inWord.substring(0,1)) {

				case "a":

					outWord=inWord.slice(1)+"yy";

					break;

				case "e":

					outWord=inWord.slice(1)+"ey";

					break;

				case "i":

					outWord=inWord.slice(1)+"iy";

					break;

				case "o":

					outWord=inWord.slice(1)+"oy";

					break;

				case "u":

					outWord=inWord.slice(1)+"uy";

					break;

				default:

		 outWord=inWord.slice(1)+inWord.substring(0,1)+"ay";

					break;

			}

			wordList[count]=outWord;

		}

		// Join words in array into final phrase

		pigPhrase=wordList.join(" ");

		return pigPhrase;

	}

// end hiding script --></SCRIPT>

</HEAD>

<BODY>

<FORM NAME="transForm">Enter a phrase:

	<INPUT TYPE="text" NAME="txtInput" SIZE="66">

	<P>Pig Latin:

	<INPUT TYPE="text" NAME="txtPigLatin" SIZE="70">

	<P>

	<INPUT TYPE="button" NAME="e2pButton"

		VALUE="English to Pig Latin"

onClick="transForm.txtPigLatin.value=transEngToPig(transForm.txtInput.value);">

</FORM>

</BODY>

</HTML>

Make sure that you understand how this script works. What will happen if you include capital letters or punctuation in the input phrase? Improve the script so that it deals gracefully with capital letters.

Question 5

Question 5 goes here.

�Document Object Model

So far, none of the material we have covered has been overtly tied to browsers and the Web – you can imagine that if document.write() instead sent stuff to a console window, the example just above might as well be being done for an application as for the Web. Indeed, the “JavaScript” material so far (which is roughly equivalent to the ECMA Script standard, consisting of the language syntax and operators and some basic classes) provides a simple general-purpose programming language. If you sat down and created some suitable classes, you could almost write a simple banking or ticket machine application...

The obvious missing link is that ECMA Script contains no general-purpose ways of getting information into or out of a script. Instead, it is up to the hosting interpreter to provide suitable classes - for example, an interpreter for server-side scripting would have to provide classes for tasks such as receiving form data and database connectivity.

For client-side scripting we require the interpreter - built into the web browser - to provide ways to manipulate the page being viewed. This is done by a hierarchy of classes that represent the objects in the page and provide methods for modifying them. The “trunk” of the tree is the window object that represents the actual browser window that you see on the screen. It has some methods, such as close() or scrollTo(), and some properties, such as window.location (which is the URL that the browser is currently looking at) and window.status (which contains the contents of the status bar at the bottom of the window). The window object also contains other objects, such as window.navigator (information about the browser software) and window.document (the actual page currently open in the browser). These in turn have their own methods, such as (in full) window.document.write() which writes text into the document window; properties, such as. window.document.bgColor which contains the background colour of the current page; and even more nested objects such as tables and forms, which in turn may have buttons and checkboxes.

This tree is known as a Document Object Model (DOM) as it represents (models) a document as a set of objects. As usual, the Netscape and Microsoft implementations have some significant differences, so the W3 consortium is currently building up a standard DOM which will apply to a range of document types (HTML, XML and so on).

Many of the objects within window.document are actually the HTML entities that make up the web page currently loaded, such as the images and forms. By default, these are presented as arrays, so that all the images are listed as window.document.images[i], all the forms as window.document.forms[i] , and so on (where i is an index number). Although the array notation is great in some circumstances, it also has two obvious disadvantages: it’s difficult for a script author to keep track of which particular object a given index number refers to, and if, for example, an extra image is added then some or all of the index numbers may change, making it necessary to re-write the script. For these reasons it is good practice to give all your entities unique names in the HTML source, e.g.

The browser will then also create the appropriate type of object with that name, which you can then use in the script (such as window.document.LogoImage instead of window.document.images[0].

To keep things simple, if the window and document that you want to work with are the current ones for that script (usually, those that the script code is actually included in), then they can be left out of the object name, so that a script could refer only to document.LogoImage, or even only LogoImage.

As the DOM includes pretty well every aspect of the browser and web page, it is central to client-side scripting. Although the structure of the model can get quite complicated, its use stays simple: methods get called (and possibly return a value) while object properties can be either be read out (for checking or analysis), or assigned a new value (as with any other variable).

The script below uses the document.lastModified property to display the time and date it was last altered:

<HTML><HEAD>

 <TITLE>DOM Example</TITLE>

</HEAD><BODY>

<P>This document was last modified on

<SCRIPT language="JavaScript">

<!-- hide script from old browsers

document.write(document.lastModified);

// end hiding script -->

</SCRIPT>

.</P>

</BODY></HTML>

Question 6

Question 6 goes here.

Form data

An important use of JavaScript is in making sure that HTML forms are filled out properly, as incorrect forms annoy both you and your potential customers.

The example below provides a simple check that the user has chosen an item from a menu.

The function menuChk() creates a variable DocIndx that holds the index number of the selection made from the pull down list. The if statement checks the value of the option with that index number, mySel.options[DocIndx].value, and if it’s blank the script knows that the user has not made a required choice. (This apparently clunky approach means that the order in which the options appear in the HTML code is irrelevant to the validation script.)

The script is not called until the form is submitted. The event handler then calls the menuChk() function with the argument this.Doctor – ‘this’ is a special keyword that represents the name of the current object (DocForm). This structure allows a single function to validate a number of SELECTions and forms.

<HTML>

<HEAD>

<TITLE>Check menu</TITLE>

<SCRIPT language="JavaScript">

<!-- hide script from old browsers

function menuChk(mySel, alertMsg){

	var DocIndx = mySel.selectedIndex;

	if (mySel.options[DocIndx].value == "") {

		alert (alertMsg);

		return false;

	} else {

		return true;

	}

} // end hiding script -->

</SCRIPT>

</HEAD><BODY>

<FORM METHOD="POST" ENCTYPE="text/plain"

 	onSubmit="return menuChk(this.Doctor, 'The Tardis can\'t leave without the Doctor!');" NAME="DocForm">

<SELECT NAME="Doctor">

		<OPTION VALUE="TB"> Tom Baker

		<OPTION VALUE="JP"> Jon Pertwee

		<OPTION VALUE="PT"> Patrick Troughton

		<OPTION VALUE="WH"> William Hartnell

		<OPTION VALUE="" SELECTED>Pick a Doctor

	</SELECT>

	<INPUT TYPE=SUBMIT>

</FORM></BODY>

</HTML>

Question 7

Question 7 goes here.

Moving objects around

The following example attempts to provide a more concrete example of objects in programming. You should attempt to work out what it does before you try it out.

Although it looks very different to the earlier examples, the important thing to notice is that it’s still made up from the same basic building blocks: a suitable object is created and then manipulated, either by altering its properties directly or by calling its methods.

�<HTML>

<HEAD>

 <TITLE>Bip... Bop...</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!-- hide script from old browsers

var maxX=490;

var posX=0;

if (screen) maxX=screen.width-150;

var ballWindow=window.open('', 'ballWin', 			'width=150,height=150');

ballWindow.document.write('<HTML><HEAD><TITLE>Ball'

	+'</TITLE></HEAD><BODY BGCOLOR=WHITE>A square'

	+' ball?</BODY></HTML>');

ballWindow.focus();

ballWindow.document.bgColor="green";

ballWindow.moveTo(posX,200);

while (posX<maxX) {

posX+=1;

ballWindow.moveTo(posX,200);

}

ballWindow.document.bgColor="red";

while (posX>0) {

posX-=1;

ballWindow.moveTo(posX,200);

}

document.write("Pong!
");

ballWindow.close();

// end hiding script -->

</SCRIPT>

</HEAD>

<BODY><NOSCRIPT><P>This is one wild script you’re missing!</P>

</NOSCRIPT></BODY>

</HTML>

Question 8

Question 8 goes here.

The example above moves the entire window around, which isn’t particularly useful. The example below instead uses style sheets to create an object, named “mover”, at a particular location on the screen, and then moves it around by changing the values of its “top” and “left” properties. You will also need a small (32 by 32 pixels) image, e.g. that from http://www.chalcedony.com/javascript3e/scripts/chap10/images/butterfly.gif.

�<HTML><HEAD>

<TITLE>Butterfly</TITLE>

<SCRIPT TYPE="text/javascript" LANGUAGE="JavaScript">

<!-- Hide script from older browsers

maxHeight = window.innerHeight-40;

maxWidth = window.innerWidth-40;

posnTop = 5;

posnLft = 5;

function moveIt() {

deltaY = Math.floor(Math.random() * 10);

if ((halfChance() || posnTop >= maxHeight) && posnTop > 5) {

	posnTop -= deltaY;

} else {

	posnTop += deltaY;

}

deltaX = Math.floor(Math.random() * 10);

if ((halfChance() || posnLft >= maxWidth) && posnLft > 5) {

	posnLft -= deltaX;

} else {

	posnLft += deltaX;

}

moverObj.top = posnTop + "px";

moverObj.left = posnLft + "px";

setTimeout("moveIt()",20);

}

function halfChance() {

if (Math.random() < .5) {

	return true;

} else {

	return false;

}

}

// End hiding script -->

</SCRIPT>

<STYLE TYPE="text/css">

	#mover {position: absolute; left: 5; top: 5;}

</STYLE>

</HEAD><BODY BGCOLOR="WHITE"

 onLoad="moverObj=document.getElementById('mover').style;moveIt();">

<DIV ID="mover">

	

</DIV>

</BODY></HTML>

This script has been adapted from Negrino and Smith. With a bit of effort you could add in a bird to chase the butterfly, or even extend the idea further... the MSDN reference below is to a version of the Asteroids arcade game written in Jscript for recent versions of IE.

Question 9

Question 9 goes here.

Some other things you could try:

Pull-down and hierarchical menus, such as those at http://uk.insight.com/. The basic idea is an illusion – the menus are present all the time, each in a separate layer, but the visibility style property is set to hidden so that you can’t see them. When you move the mouse pointer over the main heading, such as “Manufacturers”, the visibility of the appropriate layer is changed to visible until the mouse pointer is moved away. For more details see Bates, section 7.9. Hierarchical menus, such as “Hardware” use the same basic principle, but also need to ensure that sub-menus are positioned correctly even with different fonts, etc. This means that the script needs to understand the menu structure so that it can calculate where to put the submenu layers; see http://www.webreference.com/dhtml/column14/ and 15.

Drag and Drop: You could create a page that allows people to re-arrange the contents – e.g. see http://www.merzo.net/ (IE) – put simply this is done by catching the MouseDown event to detect the user grabbing the object, using an onMouseMove handler to track the mouse pointer whilst re-positioning the selected object beneath it, and finally dropping the object on a MouseUp event. For more details see http://www.webreference.com/dhtml/column7/.

Summary

The aim of this session is simply to remind you of some of the programming basics that we covered last year. You should recall

the notions of variables, values and types, and how operators can be used to manipulate variables

flow control - making a script repeat a task or make choices - and the concept of functions

arrays: lists of objects or data, in which the items have an index number in square brackets[]

objects are grouped combinations of properties, either variables or methods, that are described by classes.

The classes can either be ones that you write yourselves, as you will do in the Java labs, or they can come ready-made, either with the language platform or in an add-in library. For client-side scripting we require the interpreter - built into the web browser - to provide ways to manipulate the page being viewed. This is done by a hierarchy of classes that represent the objects in the page and provide methods for modifying them. The "trunk" of the tree is the window object which represents the actual browser window that you see on the screen.

As various implementations have some significant differences, so the W3 consortium is building up a standard, known as the Document Object Model (DOM) which will apply to a range of document types (HTML, XML and so on). Although the structure of the model can get quite complicated, its use stays simple: methods get called (and possibly return a value) while object properties can be either be read out (for checking or analysis), or assigned a new value (as with any other variable).

You have been introduced to ECMAScript, a language that allows you to create and manipulate variables and objects, and to the DOM, which provides a framework of classes for working with web pages. As the DOM includes pretty well every aspect of the browser and web page, it is central to client-side scripting. In the rest of this course we will look at a couple of other object models.

References

Question 9 has been adapted from a script from Negrino and Smith.

Last year’s handouts!

Netscape’s JavaScript Guide and reference at:

http://devedge.netscape.com/central/javascript/

Microsoft’s JScript guides:

http://msdn.microsoft.com/scripting/jscript/default.htm

W3 Consortium DOM specification:

http://www.w3c.org/DOM/

The ECMAScript specification (ECMA-262) is available from:

http://www.ecma-international.org and is also on the K: drive in the ee/EG1042B directory.

Further Reading

Various tutorial stuff:

http://www.brunel.ac.uk/depts/cc/jdk/

Basics of object-orientated programming:

http://www.brunel.ac.uk/depts/cc/jdk/1.2/tut/java/concepts/index.html

No, it’s work, honest:

http://msdn.microsoft.com

/library/default.asp?url=/library/en-us/dndude/html/dude06052000.asp

S. Bhasin: “Making Use of JavaScript” Wiley ISBN: 0 471 21976 2 (2002) [An introductory text that follows these sessions more closely]

T. Negrino and D. Smith: “JavaScript for the World Wide Web” 5th edition. Peachpit Press ISBN: 0 321 19439 X (2003) [An introductory text based on lots of useful examples.]

S. Spainhour and R. Eckstein: “Webmaster in a Nutshell” 3rd edition, O’Reilly (2002)

ISBN: 0 596 00357 9 [General reference to HTML, JavaScript and the DOM]

C. Bates: “Web Programming” 2nd edition. Wiley. ISBN: 0 470 84371 3 (2002)

H.M. Deitel, P.J. Deitel, and T.R. Nieto: “e-Business & e-Commerce. How to Program” Prentice Hall ISBN: 0 13 028419 X (2001)

D. Flanagan: “JavaScript - the definitive guide” 4th edition. O’Reilly (2002)

[Advanced reference to JavaScript, and the DOM]

D. Goodman: “Dynamic HTML – The definitive reference” 2nd edition O’Reilly (2002)

[Advanced reference to CSS, JavaScript, and the DOM]

--

J.J. Nebrensky 11/10/2005

�

Important – JSP

In two weeks’ time we hope to have a session looking at JSP (Java Server Pages). As this will require that you are registered with the server being used, it is up to YOU to ensure that you have prepared in advance, otherwise you will not be able to take part.

Before the lab you must:

Ensure you have a working webcgi directory, as instructed in last year’s CGI scripting labs

Be able to demonstrate this by calling up the standard page (with your user ID): http://cgi-int/~eg00xwp/first.cgi

Arrive punctually for the second session – 13:00 Thursday!

You might also want to revise Unix file permissions, and how to set them.

�

�Event �Applies to �Occurs when �Event handler ��Abort�images�User aborts the loading of an image (for example by clicking a link or clicking the Stop button)�onAbort��Blur�windows and all form elements (inc. LABEL)�User removes input focus from window or form element�onBlur��Change�text fields, textareas, select lists�User changes value of element�onChange��Click�buttons, radio buttons, checkboxes, submit buttons, reset buttons, links�User clicks form element or link�onClick��DragDrop�windows�User drops an object onto the browser window, such as dropping a file on the browser window�onDragDrop��Error�images, windows�The loading of a document or image causes an error�onError��Focus�windows and all form elements (inc. LABEL)�User gives input focus to window or form element�onFocus��KeyDown�documents, images, links, text areas�User depresses a key�onKeyDown��KeyPress�documents, images, links, text areas�User presses or holds down a key�onKeyPress��KeyUp�documents, images, links, text areas�User releases a key�onKeyUp��Load�document body�The page loads into Navigator�onLoad��MouseDown�documents, buttons, links�User depresses a mouse button�onMouseDown��MouseMove�nothing by default�User moves the cursor�onMouseMove��MouseOut�areas, links�User moves cursor out of a client-side image map or link�onMouseOut��MouseOver�links�User moves cursor over a link�onMouseOver��MouseUp �documents, buttons, links�User releases a mouse button�onMouseUp��Move�windows�User or script moves a window�onMove��Reset�forms�User resets a form (clicks a Reset button)�onReset��Resize�windows�User or script resizes a window�onResize��Select�text fields, textareas�User selects form element's input field�onSelect��Submit�forms�User submits a form�onSubmit��Unload�document body�User exits the page�onUnload��Table 1: Navigator event handlers - JavaScript supports the events summarised above

EE2260S Networks and Programming Workshop: Week 14

Page: � PAGE �12�

