Scripting and Object Models: Windows Script Host

Introduction

JavaScript is an object-oriented, event driven computer language, designed for client-side scripting in web browsers. It can be used to make web pages interactive and so improve the user’s experience, e.g. by making sure forms are properly filled in.

“JavaScript” itself is the sum of two main elements: a simple general-purpose programming language (consisting of the language syntax and operators and some basic classes) known as ECMAScript and defined by ECMA standard 262; and some classes to provide specialised functionality for each particular application. For example, an interpreter for server-side scripting includes classes for database access, browser session management and cookie handling, and so on.

You have seen how the core ECMAScript language has several classes of object pre-defined:

Array

Boolean

Date

Math

Number

String

Error

Function

Object

RegExp

Browser-side scripting also requires a hierarchy of classes that represent the objects in the web page and provide methods for modifying them, for which you have used the Document Object Model (DOM), as standardised by the W3C, that includes objects such as window.status and window.document.images[i].

This session will revisit the difference between a language and a particular object model by introducing the Windows Script Host (WSH) and how it can be used to control a Windows PC. The language used will again be ECMAScript, this time in the guise of Microsoft’s “JScript”, and the object models used will be the script engine’s Scripting Object Model, the WSH Object Model and finally the Component Object Model (COM). Note that the aim of the exercise is not to learn WSH per se, but simply to illustrate some object–orientated scripting concepts.

You will need to answer individually the numbered questions included in this handout and submit them as part of your portfolio.

Windows Script Host

‘Windows Script Host’ is a collection of technologies designed to provide a flexible object-orientated scripting environment for both the Windows operating system and the applications running within it. It consists of the host itself (essentially an API or class hierarchy, and a pair of simple front-ends) and a set of “scripting engines” or language interpreters that run the script itself. The scripting engines are available to any software on the machine such as IIS; notably they are shared with - and indeed distributed with - Internet Explorer. The standard interpreters are for JScript (Microsoft’s implementation of the ECMAScript standard) and VBScript.

WSH has two front ends for running scripts: wscript provides scripts with GUI facilities to allow user interaction, while cscript runs from the command line and is thus ideal for automating systems administration and maintenance tasks.

Exercise

To start off, create the following file (hello.js, say):

/* Hello Script - hello.js */

var args, name;

args = WScript.arguments;

name=args(0);

WScript.echo("Hi, " + name + " !");

Try running it from the command line: cscript hello.js yourname

You should get a greeting from your computer. Just as with a Java application, any command-line arguments can be used by the script.

Try running it without any name: cscript hello.js – what happens? You should always think about possible sources of error in your programs, and take steps to avoid or cure them – for example the script below includes a dummy value to use if none is given:

/* Better Hello Script - hello2.js */

var args, name;

name="Dude";

args = WScript.arguments;

if (args.length >0) {

	name=args(0);

}

WScript.echo("Hi, " + name + " !");

Try out the script above using both cscript and wscript.

Scripting Object Model

Microsoft provide a couple of non-standard classes with their script interpreters.

A Dictionary is a bit like an array, except that instead of identifying items by number, they can be associated with a name. For example, if a shop wants to keep a list of the people who work the tills, instead of numbers (e.g. cashierList[2]="Buffy";) the list can be indexed by the day they work: cashierDict.Item("Friday")="Xena";

The FileSystemObject represents the entire filesystem mounted by your PC, and provides methods for things like creating directories or moving files, and also writing data to or from text files.

Exercise

Create the following file (from Aitken, 2001) and run it using cscript:

// drivelist.js - Aitken (2001)

// Demonstrating the Drives collection and the Drive object.

// Displays free space on ready drives, or "not ready"

// if the drive is not ready.

var fso;

var e;

var msg;

var d;

fso = WScript.createObject("Scripting.FileSystemObject");

e = new Enumerator(fso.Drives);

msg = "";

for (; !e.atEnd(); e.moveNext())

{

 d = e.item();

 if (d.IsReady)

msg = msg + "Drive " + d.Path + " has " +

 	d.AvailableSpace + " bytes free.\n";

 else

 msg = msg + "Drive " + d.Path + " is not ready.\n";

}

WScript.Echo(msg);

Question 1

Question 1 goes here.

The last example for FileSystemObject is a bit longer. Notice that it checks for obvious problems. You could use a script like this for example to make sure that a suitable Zip disk is mounted in the drive and has enough free space before running a daily backup.

// drive.js Fredell (1999)

// Copyright 1998 Macmillan Publishing

//

var args, fso, drv;

// Retrieve arguments for the script, and check to make sure that �// the user has specified a drive letter.

args = WScript.arguments;

if (args.length != 1) {

	// User didn't specify arguments, so quit and display usage

	WScript.echo("USAGE: drive.js [driveletter]");

	WScript.echo("");

	WScript.echo(" Displays the information about a drive.");

	WScript.quit();

}

// Now instantiate a FileSystemObject and use it to get the Drive object

fso = WScript.CreateObject("Scripting.FileSystemObject");

drv = fso.Drives(args(0));

// Check to make sure that the drive is ready and quit if it isn't

if (!drv.isReady) {

	WScript.echo("Drive " + args(0) + " is not ready.");

	WScript.quit();

}

// The drive is ready, so we should be able to display all of the

// drive details

WScript.echo("Drive " + args(0) + " details:");

WScript.echo("");

WScript.echo("availableSpace = " + drv.availableSpace);

WScript.echo("driveLetter = " + drv.driveLetter);

WScript.echo("fileSystem = " + drv.fileSystem);

WScript.echo("isReady = " + drv.isReady);

WScript.echo("rootFolder = " + drv.rootFolder);

WScript.echo("shareName = " + drv.shareName);

WScript.echo("totalSize = " + drv.totalSize);

WSH Object Model

The Windows Script Host provides a set of classes designed for controlling Windows itself:

The Wscript object represents the current script. As you have seen, its properties include any command-line Arguments used and it provides methods such as Echo() to output information, Quit() to terminate the script with a particular error code, and most importantly CreateObject() to instantiate new objects.

The WshNetwork class deals with network connections such as the mounting/unmounting of networked filesystems and remote printers.

The WshCollection class describes a special kind of list, called a collection. You can’t use it directly, but many other WSH objects return collections of data; for example WshNetwork.EnumNetworkDrives() will return a collection containing a list of network drives. Two important properties of a collection are Item(n) which retrieves a single item by specifying an index, and length which gives the number of items present.

The WshShell object is the main interface to the operating system. As well as methods for reading and writing to the Registry, it provides access to further classes for working with environment variables, shortcuts and special folders such as the Start menu.

Exercise

Create the following file and run it using cscript:

/* network.js - shows network settings */

// Instantiate a WshNetwork object

var net = WScript.CreateObject("Wscript.Network");

WScript.Echo("Current network settings...");

WScript.Echo("");

// Now show current computer name and user

WScript.Echo("Computer: " + net.ComputerName);

WScript.Echo("User: " + net.UserName);

Question 2

Question 2 goes here.

The following script lets you mount/unmount drive K:.

/* kdrive.js - Mount network drive as K: */

var cmd = new String;

// Instantiate a WshNetwork object

var net = WScript.CreateObject("WScript.Network");

var args = WScript.arguments;

if (args.length==0) WScript.Quit();

cmd=args(0);

if (cmd.toUpperCase()=="ON") {

	net.MapNetworkDrive("K:", "\\\\charon-6\\@doc", false, "", "");

} else {

	net.RemoveNetworkDrive("K:", false, false);

}

If you mount the information drive using the Start menu and then run the script as e.g. cscript kdrive.js off you should then see it disappear from your list of drives. Unfortunately, mounting it is somewhat trickier for network security reasons - we don’t want you saving your passwords as plain text all over the place!

With a bit of luck there may be another machine available during the lab period for you to access for question 3 - try

	net.MapNetworkDrive("K:", "\\\\phws-01\\T_ISLAND", false, "u", "p");

The username and password here are just dummy values - the share doesn’t need them.

Question 3

Question 3 goes here.

Question 4

Question 4 goes here.

Component Object Model (COM)

The Windows operating system allows programs to communicate with each other by talking directly to their objects, rather than just piping data between them. The technology used is called Object Linking and Embedding or OLE, which you have probably heard of. In order to be able to talk to an arbitrary application, it is necessary to know what classes and methods it makes available. Rather than the authors having to hard-wire in separate routines for every software package on the planet, it is much easier to simply make each program implement a single interface. The interface defined by Microsoft for this is called the Component Object Model, ‘COM’. If one program properly implements a COM interface, then any other application can make use of it.

�
The following script inserts data about free disk space in an Excel spreadsheet.

/* Store free space on drives - drvspace.js */

var count=1;

var drv, wkBook, xlApp;

// Create instances of FileSystemObject fso and its drives e

var fso = WScript.CreateObject("Scripting.FileSystemObject");

var e = new Enumerator(fso.Drives);

// Create an instance of Excel and make it visible

xlApp = WScript.CreateObject("Excel.Application");

xlApp.Visible = true;

wkBook = xlApp.WorkBooks.Add;

while (!e.atEnd()) {

	drv = e.item();

	if (drv.isReady) {

		WScript.Echo(drv.Path + " " + drv.availableSpace);

		xlApp.Cells(count, 1).Value = drv.Path;

		xlApp.Cells(count, 2).Value = drv.availableSpace/(1024*1024);

		count += 1;

	}

	e.moveNext();

}

// Save workbook and leave Excel

wkBook.SaveAs("H:\\drives.xls");

xlApp.Quit();

Most applications, like Excel, have both GUI and COM interfaces. However, it is possible to write a (usually small) program that can only be used through COM. This is commonly referred to as an “ActiveX control”. Since the scripting engine is shared between WSH and IE, and an ActiveX control can itself use COM to control further applications, you can see why the embedding of ActiveX “applets” in Web pages naturally leads to security ... issues.

Question 5

Question 5 goes here.

Error and Exception Handling

It is important to make sure you understand how your scripts can check whether something has gone wrong, and what they should do when it happens… The try-catch approach in recent ECMAScript revisions is similar to that used in Java and other languages.

Some problems for a program or script can be predicted, and hence avoided or mitigated by using the if statement to take corrective action – see exercises 2 and 5 for examples. Others can be very difficult to test for, especially if they are caused by separate parts of the system. The technical term for things being other than they should is an ‘exception’. When a problem occurs, the system will ‘throw the exception’, looking first in the current method for instructions on how to handle the problem. If none are present it will look in the method that called the current method, and so on, until it finds an error–handling routine that will ‘catch’ the exception and deal with the problem. If the programmer doesn’t provide one, the system will; and as you have seen these tend to do little apart from showing an obtuse error message and stopping the program.

Custom error handlers are provided by a “catch block” which contains the code that deals with the error. The catch block must immediately follow the “try block”, which contains the statements expected to cause trouble.

Create the following file and run it using cscript, with and without a suitable input:

/* hello3.js – Even Better Hello Script */

var args, name;

try {

args = WScript.arguments;

	name=args(0);

	WScript.echo("Hi, " + name + " !\n");

}

catch (e) {

	WScript.echo("Error type: " + e.description);

	WScript.echo("Actual problem: you must include a name.\n");

}

WScript.echo("The end\n");

Notice that once the exception handler – the catch clause – has finished, the script carries on from after it. The problem itself is represented by an object, here called e. In this case, e is a standard Error-class object as generated by the system. As you can see from its description, it doesn’t relate in any obvious (to the user) way to the source of the trouble.

This last example is the same basic script, but now pretending to accept passwords. You might use code similar to this in exercise 7 to accept a password (you don’t want to save your passwords in plain text in a file that someone might read...). It creates its own exceptions, which it throw()s explicitly. Again, create the following file and run it using cscript, with and without suitable inputs:

/* hello4.js - OTT Input Script */

var args, pword;

try {

	args = WScript.arguments;

	if (args.length<2) // No password

	{	var err = new Error;

		err.number = -1;

		err.description = "The password is missing";

		throw(err);

	}

	pword=args(1);

	if (pword.length<8) // Wrong format

	{	var err = new Error;

		err.number = -2;

		err.description = "The password is too short";

		throw(err);

	}

	WScript.echo("Your password has been entered\n");

}

catch (e) {

	WScript.echo("Error type: " + e.description);

	switch (e.number) {

	 case -1:	

		WScript.echo("You must include a password.\n");

		break;

	 case -2:

		WScript.echo("Your password is too short - get a secure one!\n");

		break;

	 default:

		throw(e);

	}

}

WScript.echo("This is the end...\n");

Error numbers and descriptions for the built-in errors can be found in the references. I’ve simply picked some unused values. Notice that if the exception isn’t one of ours, it’s thrown back out to the system to deal with. This may seem like a lot of trouble to go to for data input, but consider what might happen if, for example, the data is being read in from a file. If the data has the wrong format, we probably have the wrong file – we could ask the user for a new filename. However, if we get no data at all it probably means we have the wrong filename – but it could be that a network connection is down or that the drive has failed. Our own error messages would then be very misleading; instead we check for the cases that we know how to deal with, and let the system deal with the rest.

In fact, throw() and catch() can pass any type of data – they have been suitably overloaded. You could therefore pass only a simple number or string to represent which of your error conditions has been triggered. Conversely, large software projects will often define their own custom exception classes, to allow them to keep much more information when errors occur.

Like Java, ECMAScript also allows a finally block in exception handling. Unfortunately the try-catch-finally mechanism is not available in older web browsers.

Question 6

Question 6 goes here.

Summary

In this session you should have seen how the capabilities of a program depend on the available object models or APIs. By making use of the right objects and methods, even an apparently simplistic language like JScript can readily carry out complex tasks.

Further Work

Make a directory with some junk in it, and try to copy and delete some files or folders. fso.CopyFile("drives.log", "drives.old"); will copy one file to another, MoveFile() and DeleteFile() move and delete them and so on.

Question 7

Question 7 goes here.

References

Microsoft’s WSH Guide:

http://www.microsoft.com/scripting/

Microsoft’s JScript Guide:

http://msdn.microsoft.com/scripting/jscript/default.htm

Netscape’s JavaScript Guide:

http://developer.netscape.com/tech/javascript/index.html

The ECMAScript specification (ECMA-262) is available from:

http://www.ecma-international.org and is also on the K: drive in the ee/EG1042B directory.

Further Reading

There are many books on the Windows Script Host, but unhelpfully the vast majority uses only VBScript in their examples. Aitken and Fredell et al. are exceptions.

P.G. Aitken: “Windows Script Host” Prentice Hall PTR (2001)

T. Fredell et al.: “Sams Teach Yourself Windows Script Host in 21 Days” Sams Publishing (1999) ISBN: 0 672 31374 X [QA 76.76 063F73]

J.L. Ford, Jr: “Microsoft Windows Shell Scripting and WSH Administrators Guide” Premier Press (2002) ISBN: 1 931841 26 8 [looks at both command line scripting and WSH]

You can find out what APIs are available for various applications by looking at their online help pertaining to in-application scripting (VBA).

--

J.J. Nebrensky 19/01/2005

�

Important – JSP

In a weeks’ time we hope to have a session looking at JSP (Java Server Pages). As this will require that you are registered with the server being used, it is up to YOU to ensure that you have prepared in advance, otherwise you will not be able to take part.

You must:

Ensure you have a working webcgi directory, as instructed in last year’s CGI scripting labs. You may need to create it manually.

Be able to demonstrate this by calling up the standard page (with your user ID): http://cgi-int/~eg00xwp/first.cgi

Arrive punctually for the lab session – 14:00 Thursday!

Attend the extra seminar in LC108 at 14:00 Monday 24th January.

You might also want to revise Unix file permissions, and how to set them.

EE2260S Networks and Programming Workshop: Week 15

Page: � PAGE �9�

