

Threads In MIDP Applications

 What is a Thread?
 How do they work in CLDC/MIDP?
 When are they used?

emstaam
Author: Chris Harcourt

What is a thread?

 A thread is a chain of execution within a program.
 A thread can do only one thing at any given time.

 Updating the display.
 Handling user input events.
 Connecting to a network.
 Nothing! - called waiting or sleeping.

 A thread has it's own copies of local variables for the
methods it executes.

Threads in CLDC/MIDP

 CLDC supports multi-threading
 Two approach to writing threads:

 java.lang.Runnable (interface)
 Classes implement this to have (some) code execute in a

thread.
 Defines one public method : run(). This contains code

which is run in the thread.

 java.lang.Thread (implements Runnable)
 Represents a thread within the system.
 Has methods for manipulating thread (start, sleep, etc)
 Subset of the Java SE class.

Threads in CLDC/MIDP (2)

 Important methods on java.lang.Thread:
 start() - starts the thread's execution
 interrupt() - interrupts execution (only in CLDC-1.1)
 sleep(long) - pauses execution for specified time
 isAlive() - tests if the thread is “alive”
 set/getPriority() - manipulate priority (higher

priority threads are executed in preference to lower)
 See the MIDP API documentation for more details

Using java.lang.Runnable

Class must implement Runnable

Somewhere else (e.g. Midlet) creates/starts the thread

...
Thread myThread = new Thread(new MyRunnable());
myThread.start();
...

class MyRunnable implements Runnable {
 public void run() {
 ... do something ...
 ... your code ...
 }
}

Example 1 (SimpleRunnable)

 The Midlet class itself implement Runnable.
 Thread is created passing “this” in constructor.
 Execution of thread prints 1-10 to console.

Using java.lang.Thread

Class extends Thread

Somewhere else (e.g. Midlet) creates/starts the thread

class MyThread extends Thread {
 public void run() {
 ... do something ...
 ... your code ...
 }
}

...
Thread myThread = new MyThread();
myThread.start();
...

Example 2 (SimpleThread)

 Midlet contains an inner class which extends Thread
 No need to pass anything in thread's constructor.
 Thread body prints 1 – 10 to console.
 This time using sleep() to pause the thread between

each number.

Why Use Threads?

 User Experience
 commandAction() runs in

the system's thread
 Actions which take time

will “block” this thread,
which results in a “hung”
user interface.

 To the user it appears
that the application has
frozen!

 Not what we want...

Why Use Threads? (2)

 Solution: perform slow
(blocking) actions in a
separate thread.

 This means the UI can
be used while another
thread performs the slow
action in the background.

 This technique should be
used for anything which
could take longer than a
second or so.

Synchronisation

 When multiple threads could access the same data
care must be taken to avoid corruption.

 This is done using the “synchronized” statement.
 Ensures only one thread can access a resource at

a time.
 Exactly the same as in Java SE.
 Lucky for us, most of MIDP is already “thread safe”.
 But, if your application is multi-threaded you must

consider synchronisation issues.
 Care must be taken to avoid “deadlocks”.

Synchronisation (2)

 Synchronisation applied to an object:

 Synchronisation applied to a method:

synchronized (anObject) {
 ... some synchronised code ...
 ... only one thread can access anObject ...
}

public synchronized void doSomething() {
 ... some synchronised code ...
 ... only one thread can access doSomething() ...
}

General Considerations

 Resource constraints
 Don't expect to use lots of concurrent threads.
 Clean-up unused threads.

 Keep it simple – debugging threading issues is hard.

Golden Rule:
If you didn't create the thread yourself you are not

allowed to block or sleep it.
(don't hijack the system thread!)

