Threads In MIDP Applications

= What is a Thread?
= How do they work in CLDC/MIDP?
= When are they used?

Author: Chris Harcourt

emstaam
Author: Chris Harcourt

What is a thread?

= A thread is a chain of execution within a program.
= A thread can do only one thing at any given time.
= Updating the display.
= Handling user input events.
= Connecting to a network.
= Nothing! - called waiting or sleeping.

= A thread has it's own copies of local variables for the
methods it executes.

Threads in CLDC/MIDP

= CLDC supports multi-threading
= Two approach to writing threads:

= java. lang.Runnable (interface)

= Classes implement this to have (some) code execute in a
thread.

= Defines one public method : run(). This contains code
which is run in the thread.

= java. lang.Thread (implements Runnable)

= Represents a thread within the system.
= Has methods for manipulating thread (start, sleep, etc)
= Subset of the Java SE class.

Threads in CLDC/MIDP (2)

= Important methods on java. lang.Thread:

start () - starts the thread's execution

interrupt() - interrupts execution (only in CLDC-1.1)
sleep(long) - pauses execution for specified time
1sAlive() - tests if the thread is “alive”

set/getPriority() - manipulate priority (higher
priority threads are executed in preference to lower)

= See the MIDP API documentation for more details

Using java.lang.Runnable

Class must implement Runnable

class MyRunnable implements Runnable {
public void run() {
. do something ...
. your code ...

Somewhere else (e.g. Midlet) creates/starts the thread

fﬁ%ead myThread = new Thread(new MyRunnable());
myThread.start();

Example 1 (SimpleRunnable)

= The Midlet class itself implement Runnable.
= Thread is created passing “this” in constructor.
= Execution of thread prints 1-10 to console.

Using java.lang.Thread

Class extends Thread

class MyThread extends Thread {
public void run() {
. do something ...
. your code ...

Somewhere else (e.g. Midlet) creates/starts the thread

fﬁ%ead myThread = new MyThread();
myThread.start();

Example 2 (SimpleThread)

Midlet contains an inner class which extends Thread

No need to pass anything in thread's constructor.
Thread body prints 1 — 10 to console.

This time using sleep() to pause the thread between
each number.

Why Use Threads?

Time
System | Application
= User Experience) startapp()
= commandAction() runs in commandActions)
the system'’s thread
= Actions which take time —

will “block™ this thread, '
which results in a *hung” ..

user interface. System‘ Application
startApp()

= To the user it appears '
that the application has ‘ commandAction()

froze N ' makes connection
this takes time

= Not what we want...

Why Use Threads? (2)

= Solution: perform slow
(blocking) actions in a

separate thread. Time
i System Application
= This means the Ul can ‘ SartApp()
be used while another ‘ '
thread performs the slow | commandAction()
action in the background. main thread new thread does
given bac slow action
= This technique should be System

used for anything which Y
could take longer than a
second or so.

Synchronisation

When multiple threads could access the same data
care must be taken to avoid corruption.

This is done using the “synchronized” statement.

= Ensures only one thread can access a resource at
a time.

Exactly the same as in Java SE.
Lucky for us, most of MIDP is already “thread safe”.

But, if your application is multi-threaded you must
consider synchronisation issues.

Care must be taken to avoid “deadlocks”.

Synchronisation (2)

= Synchronisation applied to an object:

synchronized (anObject) {
. some synchronised code ...
. only one thread can access anObject ...

= Synchronisation applied to a method:

public synchronized void doSomething() {
. some synchronised code ...
. only one thread can access doSomething() ...

General Considerations

= Resource constraints
= Don't expect to use lots of concurrent threads.
= Clean-up unused threads.
= Keep it simple — debugging threading issues is hard.

Golden Rule:
If you didn't create the thread yourself you are not

allowed to block or sleep it.
(don't hijack the system thread!)

