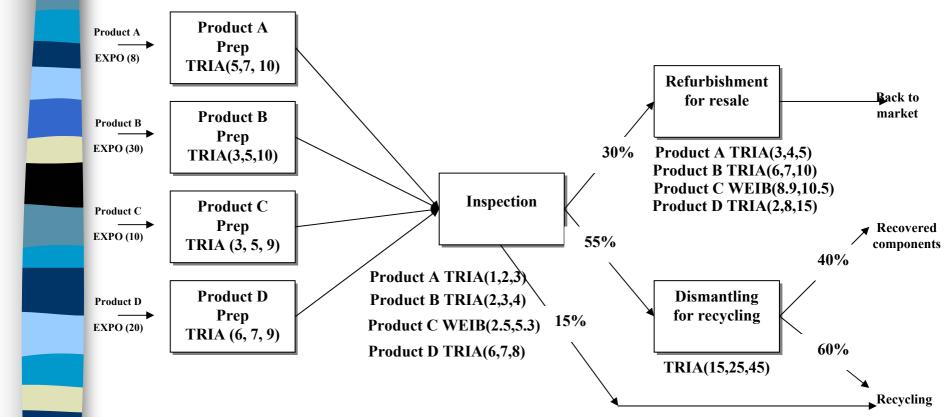

Systems Modelling and Simulation (Lab session 2)

After this session you should be able to


- 1. Develop a modelling approach for a typical simulation problem.
- 2. Build and run a complete simulation model.
- 3. Understand and interpret the results of a simulation run.

Modelling a reverse supply chain problem

- Problem formulation
- Modelling approach
- Building the model
- Running the model
- Viewing the results

Problem formulation (2)

- There are four types of products; A,B,C and D
- Arrival rates are;
 - A: Exp(8), B: Exp(30), C: Exp(10), D: Exp(20)
- Prep area service times;
 - A: TRIA(5,7,10), B: TRIA(3,5,10), C: TRIA(3,5,9), D: TRIA(6,7,9)
- Inspection area service times:
 - A: TRIA(1,2,3), B: TRIA(2,3,4), C: WEIB(2.5,5.3), D: TRIA(6,7,8)
- Refurbishment area service times
 - A: TRIA(3,4,5), B: TRIA(6,7,10), C: WEIB(8.9,10.5), D: TRIA(2,8,15)
- Dismantling area service times
 - TRIA(15,25,45)

Problem formulation (3)

- After inspection,
 - 15% of products are sent to recycle
 - 55% are sent for dismantling
 - 30% for refurbishment
- 60% of dismantled production go to recycle
- 40% of dismantled products are recovered components for reuse.

Modelling objective

Collect statistics in each area on:

- Resource utilization
- Number in queue
- Time in queue
- Cycle time for refurbished products, dismantled components and recycled products
- Run setup
 - Warm-up period = 0
 - Replication length = 4 x 8hr shifts
 - Number of replications = 1
 - Initialize between replications; System-yes, Statistics-yes

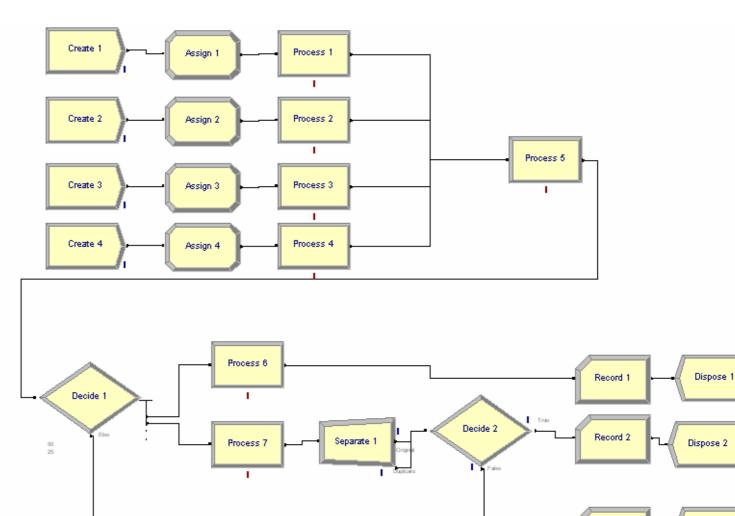
Modelling approach (1)

We can break our system down into the following;

- Create arrival of products
- Send products through prep process
- Send products through inspection process
- Decide where each product goes after inspection
- Send part to refurbishment
- Send other parts to Dismantling
- Dispose remaining part to Recycling
- Dispose to market after refurbishment
- Split products into components after dismantling
- Dispose recovered components after dismantling
- Dispose after dismantling to recycling

Modelling approach (2)

We will need the following modules

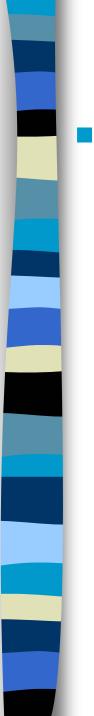

- Create (4)
- Assign (4)
- Process (7)
- Decide (2)
- Record (3)
- Separate (1)
- Dispose (3)

Modelling approach (3)

- Entities in the model
 - Product A
 - Product B
 - Product C
 - Product D
 - Resources in the model
 - Prep A
 - Prep B
 - Prep C
 - Prep D
 - Inspector
 - RefTechnician
 - DisTechnician

Our basic model

Record 3 ----- Dispose 3



Building it yourself

Before you running the model

- Go to "Run" menu and select "setup"
- Set replication parameters as shown

un Setup		×
Run Speed Project Parameters	Run Control Reports Replication Parameters Array Sizes	
Number of Replications:	Initialize Between Replications	
, Start Date and Time:		
19 September 2007 19		
Warm-up Period:	Time Units:	
0.0	Hours	
Replication Length:	Time Units:	
32	Hours	
Hours Per Day:	Base Time Units:	
24	Minutes	
Terminating Condition:		
·		
ОК	Cancel Apply Help	

Viewing the results

Select "yes" to view report at the end of the simulation run.

everse Logistics Syste						
Process Queue 15:46:03	15:46:03 Category Overview					
Resource						
User Specified A Reverse Logistics S	ystem Model					
Replications: 1 Time	Units: Minutes					
Queue						
Time						
Waiting Time	Average	Half Width	Minimum Value	Maximum Value		
Dismantling Process.Queue	726.29	(Insufficient)	0.00	1476.05		
Inspection Process.Queue	26.8915	(Correlated)	0.00	71.1417		
Product A Process.Queue	14.8869	(Insufficient)	0.00	89.7732		
Product B Process.Queue	0.7297	(Insufficient)	0.00	5.9013		
Product C Process.Queue	4.4349	(Insufficient)	0.00	22.8193		
Product D Process.Queue	1.9019	(Insufficient)	0.00	14.6856		
Refurbishment Process.Queue	4.1091	(Insufficient)	0.00	31.7503		
Other						
Number Waiting	Average	Half Width	Minimum Value	Maximum Value		
Dismantling Process.Queue	132.32	(Correlated)	0.00	263.00		
Inspection Process.Queue	8.1541	(Correlated)	0.00	23.0000		
Product A Process.Queue	2.1056	(Correlated)	0.00	14.0000		
Product B Process.Queue	0.02584436	(Insufficient)	0.00	1.0000		