The main focus of my research is on process innovations in various industries, for example, chemical, petrochemical, textile, plating, and leather manufacturing processes. I work on the development of treatment system which can be subdivided into end-of-pipe technologies and clean technologies. The end-of-pipe technologies are basically designed for installation at the end of the production process, without altering the chemical reactions manufacturing the main product. The clean technology, on the other hand, is a type of technology with which pollution is eliminated from within the production process, meaning that pollutants do not form in the first place. Thus, clean technologies are frequently seen as being superior to end-of-pipe technologies for both environmental and economic reasons. The selection of these technologies to combat the problems associated with the management of pollution control largely depends on the nature of the environmental problems and the type of regulations involved.
The development of clean-up technologies involves the use of various types of solvents to remove toxic materials from both solid and liquid waste streams. The main focus of my research is to prepare and characterise different types of ionic liquids (ILs) and evaluate their performances for the selective extraction of metals from mixed waste samples. The specific objectives are: 1) to synthesis ILs using solvent-free methods, 2) to characterise these ionic liquids and 3) to investigate the solubility of heavy metals, rare earth metals, and metal oxides in these ILs. The development of clean technologies involves optimisation and improved control of chemical reactions in existing processes and the development of new processes to achieve environmentally clean reactions. In particular, I work on the development of a concentrator cell to improve metal recovery systems from dilute solutions for the control of industrial pollution received the Queen’s Award for Environmental Achievement.
Supervisor: Dr Abdul Jabbar Chaudhary