As counter-current chromatography (CCC) is becoming an established method in chromatography for scaling from analytical CCC in the laboratory to full process scale in the industrial manufacture of products, it is becoming increasingly important to model the process and to be able to predict column scale-up parameters for a given process. A method of modelling CCC on the basis of an eluting counter-current distribution (CCD) model was developed. This model confirms that peak width in CCC varies in proportion to the square root of the length of the column, establishes a formula for predicting peak width in terms of retention factor and retention time, and provides a method for determining the efficiency of a given CCC instrument. This allows, for the first time, the mixing efficiency of different CCC approaches and/or devices to be compared and perhaps, more importantly, predictions to be made that are outside the current operating parameters of existing CCC instrumentation. This will greatly assist in the design of new equipment, particularly in scale-up, and will also help users optimize the results from their CCC instruments.
Numerous operating modes and pump out procedures that can be used with counter-current chromatography (CCC) have been described recently and a universal model for CCC based on CCD was developed to incorporate these modes and procedures. This model is validated with real separations from the literature and against the established CCC partition theory. This universal model is proven to give good results for isocratic flow modes, as well as for co-current CCC and dual flow CCC, and will likely also give good results for other modes such as intermittent CCC.
I.A. Sutherland, J. De Folter and P. Wood (2003) J. Liquid Chromatogr. & Rel. Technol. 26 (9&10), doi:10.1081/JLC-120021260
J. de Folter and I.A. Sutherland (2009) J. Chromatogr. A, 1216, doi:10.1016/j.chroma.2008.11.088
